

Recent Tevatron Operational Experience

<u>A. Valishev</u>, G. Annala, D. Bollinger, B. Hanna, A. Jansson, T. Johnson, R.S. Moore, D. Still, C.Y. Tan, X.L. Zhang **Fermilab, Batavia IL**

PAC'09, May 8, 2009

Outline

- Overview of collider operation and issues
- Categorization of quenches
- Orbit stabilization and optics stability
- Losses during low-beta squeeze
 - > Aperture at CDF
 - > Beam-beam effects and chromaticity
- Summary

Peak Luminosity of the Tevatron

Collider Fill Cycle

Limitations:

- Np=3 10¹¹/bunch $\epsilon p=18 \pi mm mrad$ upstream machines
- Na=1 10¹¹/bunch accumulation rate

Beam Intensity

 $\varepsilon a=7 \pi mm mrad$ beam-beam effects *

 L_0 - experiments

Concentrate on repeatability**

* C.Y.Tan, TU6RFP053 ** C.Gattuso, MO4RAC03

Store 6950 L_0 =3.5x10³²

Integrated Luminosity Performance

PAC'09 5/8/09 - A.Valishev

Categorization of Quenches

- Total quenches since Oct. 2007 73
- Distribution
 - Injection: 4
 - > Ramp/Flattop: 6
 - > Squeeze: 21
 - Initiate Collisions: 6
 - Remove Halo: 5
 - > HEP: 31
- Most quenches in squeeze (18) were caused by a combination of beam-beam and orbit issues.
- Only 1 beam related quench in HEP

Orbit and Tune Stability

Aperture Restriction in CDF IR

PAC'09 5/8/09 - A.Valishev

Aperture Restriction in CDF IR

PAC'09 5/8/09 - A.Valishev

Beam-Beam Effects at Low-Beta Sequence 14

Normalized Proton Loss During Low-Beta Squeeze

Red traces - before chromaticity change at sequence 14, blue - after

ᅷ

Luminosity and Timeline of Events

- Stability is the key to successful running in FY08 an FY09
 - > Orbit stabilization
 - > Controlled antiproton emittance (or $\epsilon a/\epsilon p$ ratio)
 - Controlled proton tune
- With stable machine and beam parameters beambeam effects are no problem up to 3.5x10³²
- Low-beta squeeze is the most demanding stage of the collider cycle
 - Losses are caused by long range beam-beam effects
 - > Increase of aperture in the CDF IR improved situation
 - > Chromaticity is a strong factor
- Further (though not large) improvements are possible to achieve

Calculated Tune Chromaticity with Beam-Beam

Quenches After Oct. 6 2008

- Total quenches since Oct. 6 2008 22
- Distribution
 - Injection: 0
 - > Ramp/Flattop: 2
 - > Squeeze: 5
 - Initiate Collisions: 0
 - > Remove Halo: 1
 - ≻ HEP: 14

