Project X at Fermilab: Prospects and Plans

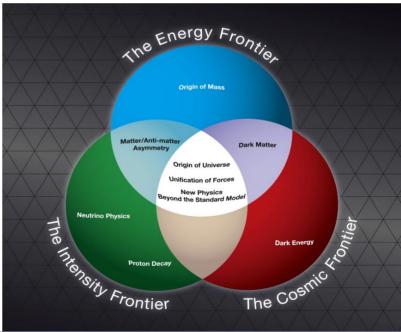
Steve Holmes Fermilab

Particle Accelerator Conference May 8, 2009

- Strategic Context
- Project X Goals and Configuration
- Research, Design, and Development Plan
- Relationship to other Programs

Project X website: http://projectx.fnal.gov/

Project X Strategic Context Fermilab in the World Program


Fermilab currently operates the highest energy collider, and the highest power long baseline neutrino beam in the world. In 2009:

The energy frontier will move to LHC,
J-PARC will initiate a strongly competitive neutrino program

Project X Strategic Context Fermilab and the U.S. Strategic Plan

- The U.S. community, through its HEPAP/P5 process, has adopted a strategic plan for the U.S. based on initiatives on three frontiers
- Fermilab is fully aligned with the U.S. plan
 - In the coming decade Fermilab will remain the sole site for acceleratorbased Elementary Particle Physics in the U.S.
 - Development of accelerator facilities for the Energy and Intensity Frontiers

Strategic Context P5 Recommendations

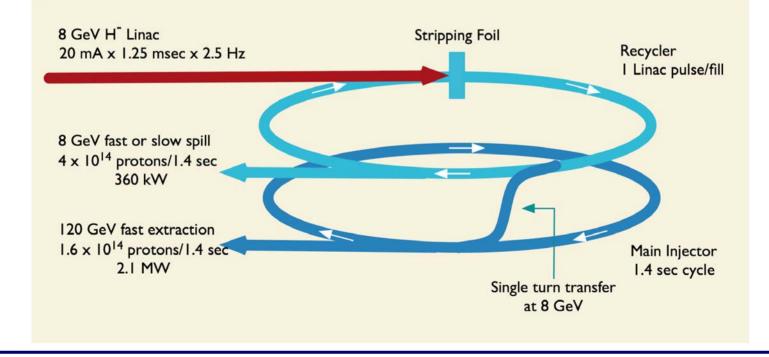
• Energy Frontier

- "The panel recommends for the near future a broad accelerator and detector R&D program for lepton colliders that includes continued R&D on ILC ... in support of the international effort"
- "The panel also recommends R&D for alternative accelerator technologies, to permit an informed choice when the lepton collider energy is established."
- Intensity Frontier
 - "The panel recommends an R&D program in the immediate future to design a multi-megawatt proton source at Fermilab and a neutrino beamline to DUSEL..."

Project X Strategic Context Evolution of the Accelerator Complex

- A multi-MW Proton Source (aka Project X) is the lynchpin of Fermilab's strategy for future development of the accelerator complex :
 - Energy Frontier:
 - Tevatron \rightarrow ILC or Muon Collider as options for the Fermilab site
 - Future energy frontier facilities aligned with Project X technology development
 - Intensity Frontier:
 - $NuMI \rightarrow NOvA \rightarrow LBNE/\mu 2e \rightarrow Project X \rightarrow NuFact$
 - World leading program based on continuously increasing sensitivity to neutrino sector physics and other beyond the standard model phenomena

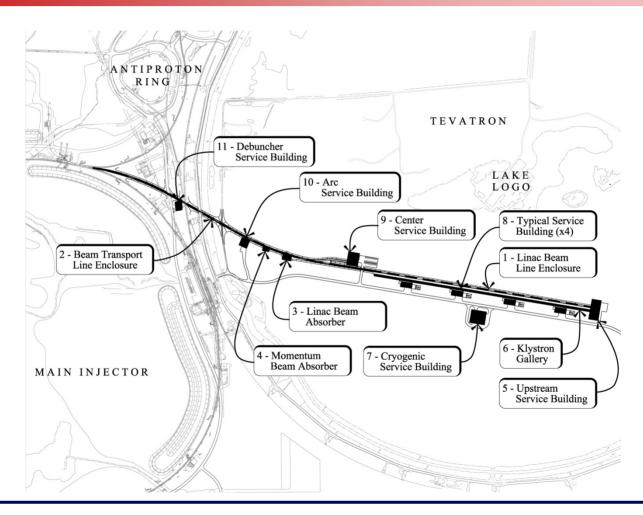
Project X Goals and Configuration Mission Need



- P5 report defined facility requirements:
 - A neutrino beam for long baseline neutrino oscillation experiments.
 - 2 MW protons at 60 120 GeV
 - High intensity 8 GeV protons for kaon and muon based precision experiments
 - Simultaneous operations with the neutrino program.
 - A path toward a muon source for a possible future neutrino factory and/or a muon collider at the Energy Frontier.
 - Requires upgrade potential to 2-4 MW <u>at 8 GeV</u>.

Project X Initial Configuration

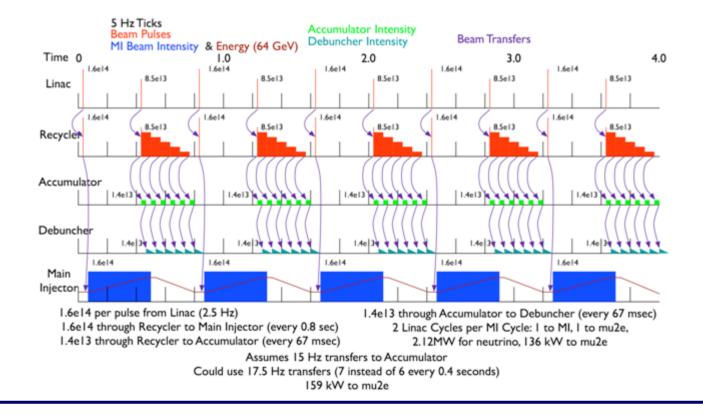
- Project X Design Criteria
 - 2 MW of beam power over the range 60 120 GeV;
 - Simultaneous with at least 150 kW of beam power at 8 GeV;
 - Compatibility with future upgrades to 2-4 MW at 8 GeV



Initial Configuration Performance Goals

Linac		
Particle Type	H-	
Beam Kinetic Energy	8.0	GeV
Particles per pulse	1.6×10 ¹⁴	
Linac pulse rate	2.5	Hz
Beam Power	500	kW
Recycler		
Particle Type	protons	
Beam Kinetic Energy	8.0	GeV
Cycle time	1.4	sec
Particles per cycle to MI	1.6×10 ¹⁴	
Particles per cycle to 8 GeV program	1.6×10 ¹⁴	
Beam Power to 8 GeV program	360	kW
Main Injector		
Beam Kinetic Energy (maximum)	120	GeV
Cycle time	1.4	sec
Particles per cycle	1.6×10 ¹⁴	
Beam Power at 120 GeV	2100	kW

Project X Initial Configuration Provisional Siting



Initial Configuration Operating Scenarios

- Operating scenario for 64 GeV (2.1 MW)
 - 136 kW at 8 GeV to mu2e experiment in parallel

- The primary goal of the Research, Design, and Development (RD&D) program is to complete a fully developed baseline scope, cost estimate, and schedule in 2012 (CD-2).
 - Includes technical component development;
 - Undertaken by a multi-institutional collaboration capable of executing both the RD&D plan and the follow-on construction project.
- Secondary goals:
 - Coordinate Project X and ILC scrf development programs;
 - Retain alignment of Project X and the Neutrino Factory and Muon Collider programs to assure that Project X could serve as a stepping stone to either facility.

Project X Project X RD&D Plan Technology Challenges

- Linac (325 MHz)
 - Front end: Peak current 32 mA x 1.25 msec x 2.5 Hz
 ➢ Consistent with SNS performance
 - RF control of multiple accelerating structures from single klystron
 - High speed chopping (325 MHz)
 - Variable chopping patterns
 - Consideration of warm vs. cold front end
 - 30-60 MeV cold front end (currently under development)
- Linac (1300 GHz)
 - 32 mA peak (20 mA average) x 1.25 msec x 2.5 Hz
 > 3 times the charge/pulse of ILC
 - 25 MV/m gradient
 - RF control of multiple accelerating structures from single klystron

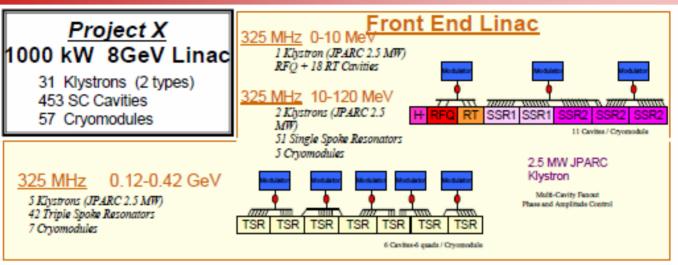
Project X Project X RD&D Plan Technology Challenges

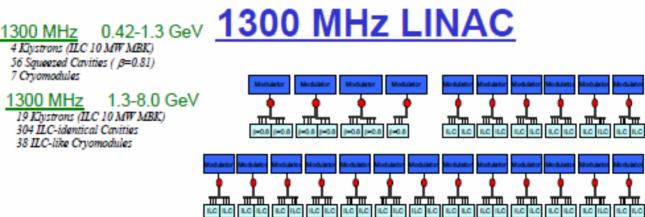
- Beam Transfer Line and Injection
 - H⁻ transport without stripping
 ➤ Cryogenically cooled beam pipe
 - Loss control and mitigation
 - Multi-turn injection
 - Transverse and longitudinal painting
 - ➤ Losses
 - Foil lifetime
- Recycler/Main Injector
 - Space-charge
 - e-cloud
 - Other collective instabilities

RD&D Plan Near-term Strategy

- Develop an Initial Configuration Document
 - Released V1.1 on 3/15/09: (available at http://projectx.fnal.gov)
- Revise/update the RD&D Plan
 ⇒ Released V2.2 on 3/3/09
- Create a preliminary cost range estimate (based on ICD V1.1)
 - Completed and subject to Director's Review March 16-17, 2009
- Establish a multi-institutional collaboration for the RD&D phase
- Formally establish "mission need" (CD-0) in 2009
 - Based on: P5 mission definition, ICD, preliminary cost estimate
 - Coordinated with very long baseline and mu2e

RD&D Plan **Collaboration Plan**

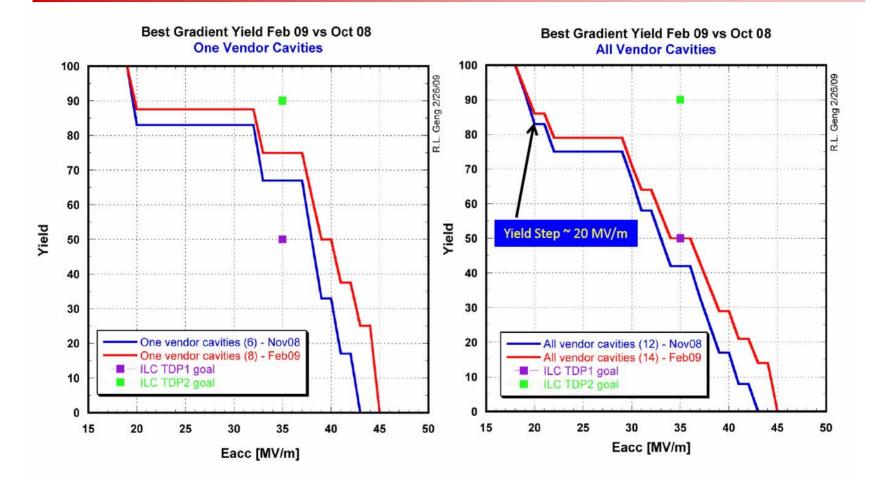

- A multi-institutional collaboration is being formed for the RD&D phase
 - RD&D program undertaken as a "national project with international participation".;
 - Fermilab holds overall responsibility as host laboratory;
 - Recognize it would be natural for responsibilities to carry over into the construction phase.
- An MOU covering the RD&D phase is currently circulating for signatures among potential U.S. laboratory collaborators:
 - ANL
 - BNL
 - Cornell
 - LBNL


- MSU
- TJNAF
- SI AC
- ILC/ART

PAC09, May 8, 2009 – S. Holmes

ORNL/SNS

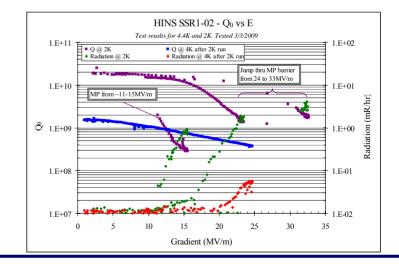
Project X Technology Development Linac Layout


PAC09, May 8, 2009 – S. Holmes

Project X Technology Development ILC/SRF Joint Development Strategy

- 38 ILC-like cryomodules are required for Project X. In detail they will not be identical to ILC:
 - Beam current: 20 mA \times 1.25 msec \times 2.5 Hz
 - Focusing element required in each CM
 - Gradient: 25 MV/m
- Close coordination with ILC/GDE during development phase
 - Strategy based on ILC "plug compatibility"
 - Joint cryomodule development program
 - Shared facilities for assemble and testing
 - ILCTA:rf unit beam test

Project X Technology Development Summary of 9-cell Vertical Tests in U.S.



Project X Technology Development Front End

- Fermilab and collaborators have been developing front end technology beyond the requirements of Project X initial goals:
 - 60 MeV front end @ 27 mA \times 1 msec \times 10 Hz
 - Multiple room temperature and sc cavities driven by a single rf source (high power vector modulators)
 - High speed (nsec) beam chopping at 2.5 MeV
 - Establish technical feasibility and cost basis by ~2011

Project X Technology Development Muon Joint Development Strategy

- Project X shares many features in common with the proton driver required for a Neutrino Factory or Muon Collider
 - IDS-NF shows 4 MW @ 10 \pm 5 GeV proton energy

Project X linac: 20 Hz upgrade = 4 MW @ 8 GeV

- Muon Collider requires similar power, but requires charge consolidated into a single bunch
- ⇒ Issues of peak and average beam power, repetition rate, bunch length will require new accumulation/compressor rings downstream of the linac
- Natural evolutionary schemes through neutrino superbeams: NOvA→ LBNE → Project X → Neutrino Factory→ Muon Collider
- Utilization of Project X as a front end for NF or MC coordinated with NFMCC, MCTF, and IDS_NF

- Project X is central to Fermilab's strategy for future development of the accelerator complex:
 - Energy Frontier: Aligned with ILC technology development; preserves Fermilab as potential site for ILC or a Muon Collider
 - Intensity Frontier: Supports a world leading program in neutrinos and rare processes; preserves Fermilab as potential Neutrino Factory site
- An initial configuration has been established meeting requirements as specified in the P5 report
 - >2 MW at 60-120 GeV, simultaneous with >150 kW at 8 GeV
- The facility could be constructed over the period ~2014 2018
- The initial configuration can be upgraded to 2-4 MW at 8 GeV
- R&D integrates effort on Project X, ILC, SRF, and Muon Facilities
- Collaboration being formed

<u>Multi-MW Proton Facility – Project X</u>

NuMI (NOVA)

DUSEL

8 GeV ILC-like Linac

Recycler: 100-200 kW/(8 GeV) for kaons, muons, ... Main Injector: >2 MW (60-120 GeV) for neutrinos