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Abstract

The direct RF feedback has been adopted in storage ring
to reduce the beam loading effect for maximizing the stored
beam current. Its performance in reducing beam loading
is determined by the operational parameters, including the
feedback gain, RF phase shift and the loop delay time.

This paper presents a mathematical method, based on the
Pedersen model, to study the effects of the direct RF feed-
back on beam loading. Through an example, the influences
of different operational parameters on the performance of
the direct RF feedback is analyzed by examining the char-
acteristic equation of the feedback loop. The Nyquist crite-
rion is applied for the determination of system stability.

INTRODUCTION

Without RF feedback loops, the maximum stored beam
current in the storage ring machine is limited by the beam
loading effect, known as the Robinson stability limits [1].
A widely used solution to reduce the beam loading effect
is the direct RF feedback, in which part of the cavity RF
signal is feeded back to the high power RF amplifier.

The concept of the direct RF feedback is to introduce an
additional opposite beam induced voltage to the RF cav-
ity through the feedback loop, and increase the frequency
bandwidth of the RF cavity. It is equivalent to reducing the
shunt impedance and quality factor of the RF cavity.

A method, based on the above explanation, was pro-
posed to evaluate the maximum stored beam current op-
erating with the direct RF feedback [2]. But it does not in-
vestigate the influences on system stability from the change
of individual paramter in direct RF feedback operation.

In this paper, the the direct RF feedback is added to the
Pedersen model [3]. For focusing on the effects caused by
the direct RF feedback, the model in this paper does not
include other RF feedback loops like RF phase and ampli-
tude feedback loops. Based on this model, the character-
istic equation of the feedback loop is derived. Through a
example, we demonstrate how to examine the system sta-
bility with the Nyquist criteria; and investigate how the de-
lay time affects the feedback gain and the phase shift of the
feedback RF signal in maximizing the stored beam current.

PEDERSEN MODEL INCLUDING DIRECT
RF FEEDBACK

The model and its phasor diagram uesed to investigate
the direct RF feedback are shown in Fig.1 and Fig.2. In
the model, the cavity voltage (−→Vc) is induced by the beam
current (−→IB), generator current (−→IG) and the feedback RF

Figure 1: The Pedersen model with direct RF feedback .

Figure 2: Phasor diagram of steady state as the cavity is
operated on RF compensated condition.

current (−→IF ). As the cavity is operated on the RF compen-
sated condition, the steady state of these generating cur-
rents of the cavity voltage can be represented as in Fig.2, in
which the cavity tuning angle φz is equal to

tan φz =
IBRs

Vc(1 + β)
sin φs (1)

where φs is the synchrotron phase, Rs is the cavity shunt
impedance, β is the cavity’s RF coupling factor, Ib is the
harmonic beam current which is equal to the double of
the average beam current as the bunch length is negligi-
ble, compared to the RF wavelength. From Fig.2, the pro-
jection of the total generating current of the cavity voltage
(
−→
IT = −→

IB + −→
IG + −→

IF ) on
−→
Vc can be expressed as ,

I0 = IT cos φz =
Vc

Rs
• (1 + β) (2)

the amplidute ratio of
−→
Ib to

−→
IT can be written as

IB

IT
=

IB

I0
cos φz =

IB

Vc

Rs

1 + β
cos φz (3)
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If the feedback current and its phase are known, IF =
GF I0 and � (−→IF ) = � (−→Vc) + φF , then the amplitude ratio
of

−→
IG to

−→
IT can be obtained from Eq. (1) to (3) and the

phasor diagram of Fig.2.

TRANSFER FUNCTIONS OF THE MODEL

The transfer functions between the cavity voltage and
voltage generating currents can be derived from the RF cav-
ity impedance,

Z(s) =
2σsRs

s2 + 2σs + ω2
R

1
1 + β

(4)

where ωR the cavity resonant frequency, and σ is defined
as

σ ≡ ωR

2QL
(5)

here QL is the loaded quality factor of the RF cavity. The
transfer functions from the total current to the cavity volt-
age are given by [3]

Gpp(s) = Gaa(s) =
1
2
{Z(s + jωRF )

Z(jωRF )
+

Z(s − jωRF )
Z(−jωRF )

}
(6)

Gpa(s) = −Gap(s) =
j

2
{Z(s + jωRF )

Z(jωRF )
−Z(s − jωRF )

Z(−jωRF )
}

(7)
where Gpp(s) and Gaa(s) are phase to phase and amplitude
to amplitude transfer functions, and Gpa(s) and Gap(s) are
phase to amplitude and amplitude to phase transfer func-
tions. From Eq. [4] to [7] we get

Gpp(s) =
σ2(1 + tan2 φz) + σs

s2 + 2σs + σ2(1 + tan2 φz)
(8)

Gpa(s) =
σs tan φz

s2 + 2σs + σ2(1 + tan2 φz)
(9)

For the beam current component (IB), The transfer func-
tions to the cavity voltage are obtained from the objections
of the current components on the total current IT :

GB
pp = Gpp

IB

IT
cos(� −→IB − � −→IT )+Gpa

IB

IT
sin(� −→IB − � −→IT )

(10)

GB
ap = Gap

IB

IT
cos(� −→IB − � −→IT )+Gpp

IB

IT
sin(� −→IB − � −→IT )

(11)
The similar expressions are for GG

pp, GG
ap, GF

pp and GF
ap,

etc.

CRITERION FOR SYSTEM STABILITY

To determine the stability of a closed-loop system, we
must investigate the characteristic equation of the system:

F (s) = 1 + Δ(s) = 1 + G(s)H(s) (12)

Figure 3: Nyquist plot for the model shown in Fig.1 with
Gf = 0. The contour of Nyquist plot encircles the point
(-1,0) for the beam current which is higher than that limited
by Robinson instability (IR,max). ωn is defined as the fre-
quency (ω)of Nyquist mapping at which the Nyquist plot
contour encircles the point (-1,0) and intersect the real axis
of the Δ(s) plane — the imagine part of Δ(s) is zero. In

is defined as In = IB/IR,max.

Δ(s) for the system in Fig.1 can be obtained by Mason’s
rule:

−Δ(s) =
BsG

B
pp + BsG

B
pae(−sTd)GfGF

ap + e(−sTd)GF
pp +

e(−sTd)GF
pa(−1/ tan φs)BsG

B
pp + e(−sTd)GF

pa

e(−sTd)GfGF
pa + (−1/ tan φs)BsG

B
pa + e(−sTd)

GfGF
aa − e(−sTd)GF

pp(−1/ tan φs)BsG
B
pa − Bs

GB
ppe

(−sTd)GfGF
aa − e(−sTd)GF

ppe
(−sTd)GfGF

aa

The system will be stable if the real part of every root of
F (s) is negative. There are different approaches to deter-
mine whether the system is stable. The approach used here
is the Nyquist stability criterion. According to it, the sys-
tem will be stable if Nyquist contour of Δ(s) does not en-
circle the (-1,0) point as the number of poles of Δ(s) in the
right-hand of the complex plane is zero. The Nyquist con-
tours for the model in Fig.1 with the RF parameters listed
in table 1 are plotted in Fig.3. Gf is set to zero for the
calculation in Fig.3 . It means that the system is not with
the direct RF feedback. Its stored beam current is limited
by Robinson instability. The harmonic current limited by
Robinson instability can be expressed as

IR,max =
2 sin φs

sin(2φs)
• Vc

Rs
• (1 + β) (13)

Fig.3 illustrates that the Nyquist mapping contour en-
circles the point (-1,0) as In > 1.0, just crosses (-1,0) as
In = 1.0, and does not encircle (-1,0) as In < 1.0.
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Table 1: RF Parameters of the Example
Beam energy (GeV) 1.5
rf frequency(MHz) 500
rf voltage(kV) 1600
Radiation loss/turn (keV) 168
Momentum compaction factor 6.78 × 10−3

harmonic number 200
Q0 1.0 × 109

Qext = Q0/β 2.5 × 105

Rs/Q0 44.5

EFFECTS OF THE OPERATIONAL
PARAMETERS ON THE FEEDBACK

PERFORMANCE

In the direct RF feedback operation, the feedback gain
(GF ) and the RF phase shift (φF ) are the two parameters
used to optimize the feedback performance — maximizing
the stored beam current. For a given delay time, which is
determined by the components and the cables of the RF
system and can not be adjusted during operation, the feed-
back gain, as shown in Fig.4, has a threshold for the max-
imum stable beam current. The threshold of the feedback
gain is constrained by the loop delay time. The gain thresh-
old can be higher as the delay time is shortened.

It is interesting to find that ωn, defined in Fig.3, is equal
to zero as the feedback gain is lower than the threshold, and
not equal to zero as the feedback gain is beyond the thresh-
old. In calculation for beam current maximization, ωn can
be an indication for whether the feedback gain should be
increased or decreased.

Figure 4: the maximum stable beam current versus the
feedback gain, that is calculated with φF = 180o and the
RF parameters listed in table 1.

It is shown in Fig.5 that as the feedback gain is small,
0.1 in this example, the stable beam current reaches to the
maximum as φF = 270o , and to the minimum as φF =
90o. And as the feedback gain becomes higher or the loop
delay time is longer, the optimized φF for the maximum
stable beam current is not fixed to 270o, and shifted from
270o toward 180o.

If the feedback RF current (IF ) is small to be negligible,
compared to the generator current (IG), the generator RF
voltage should be 180o out of the beam phase while the
beam current is pushed to stable limitation. Then we know
from Fig.2 that the generator RF voltage will be pushed by
the small feedback RF voltage to the phase stable region as
φF = 270o, and to the unstable region as φF = 90o. That
is just the phenomenon shown in Fig.5.

Figure 5: the maximum stable beam current versus RF
phase shift of the feedback loop, that is calculated with the
RF parameters listed in table 1.

CONCLUSIONS

This paper has demonstrated a mathematical method,
based on the Pedersen model, to analyze the system sta-
bility in machine operation with the direct RF feedback.
With the method in this paper, we can investigate the vari-
ation of the maximum beam current for different feedback
gains in different loop delay time. The study confirmed that
the optimized feedback gain for the maximum operational
beam current is limited by the delay time. If the loop delay
time can be shortened, then the performance of the direct
RF feedback can be improved by increasing the feedback
gain.

It is seen in the study that the frequency of the Nyquist
contour encircling the unstable point (-1,0) of the Nyquist
mapping plot is an indication for whether the feedback gain
is beyond the limitation by the delay time. The optimized
RF phase shift of the feedback loop is 270o as feedback
gain is small,and shifting toward to 180o with the increase
in feedback gain or delay time.
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