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Abstract 
A bending magnet, a linear undulator, an elliptically 

polarized undulator and a wiggler all generate 
synchrotron radiation that accelerator engineers encounter 
while they are designing components with a great heat 
load. Because their power distributions belong to a 
characteristic type, some analytic solutions for 
temperature are available and can serve for a parametric 
study. Furthermore, these closed-form solutions provide 
an optimized tool applicable to thermo-mechanical design 
such as for the crotch absorber, fixed masks, photon 
absorbers, mirrors or other subsystems with large heat 
loads. These solutions also indicate a simplified 
implementation applicable to finite-element modelling in 
real cases.  

INTRODUCTION 
Taiwan Photon Source (TPS) is a new synchrotron 

accelerator project of National Synchrotron Radiation 
Research Center (NSRRC) in Taiwan. A 3-GeV, 400-mA 
high-energy third-generation synchrotron accelerator will 
be constructed and is planned to be commissioned in 2013. 
Because of the distribution of its great thermal power in 
both a bending magnet and the insertion devices, an 
extensive thermo-mechanical analysis is performed before 
design. Currently, the finite-element method (FEM) is 
commonly used to calculate temperatures and thermally 
induced stress, but the distribution functions for a bending 
magnet and an insertion device are typically of Gaussian 
type that is difficult to implement with the FEM 2D/3D 
model. In general, an engineer meshes the areas on which 
the power is incident into a small grid (normally at least 
10 grids within the FWHM heating region), then inputs 
the corresponding Gaussian power magnitude on the 
gridded nodes. Two drawbacks are known.  

• In most cases, the heated spot is much smaller than 
that of the entire solid model. To model a Gaussian 
profile added to the heated area, very fine meshes 
must be generated along these areas. This condition 
produces complication in generating the mesh and 
results in a large aspect ratio of the element. 

• How fine an element is sufficient? This question 
always arises on meshing the model on the heated 
surface on which the synchrotron radiation is 
incident. Even when an engineer generates a fine 
mesh along the entire heated surface, he/she must 
still verify that the total power deposited in the 
model is consistent with the theoretical value. The 
testing procedure is to sum all power density 
deposited on the entire elemental heating surface for 
comparison with the theoretical total power input. In 

general, with most commercial FEM packages this 
task is not straightforward.  

Furthermore, to ensure the qualitative correctness of the 
FEM result, one should verify the result by other means, 
such as an analytic solution or even a simple manual 
calculation. An analytic solution with a simplified model 
is an effective tool not only to verify the numerical results, 
but also to render an overall view of the entire problem; 
with variation of the parameters, one can perform 
parametric tests that yield an optimized design. 

 
In this paper, we provide analytic solutions for the 

heating problem or power distribution of a typical 
bending magnet, undulator, wiggler and elliptical 
undulator. Some simplifications are made to preserve the 
representation but not to complicate unduly the problems. 
An analytic solution for the constant power distribution is 
also presented which indicates that one need not 
implement true Gaussian heating in modelling the 
problem in FEM. 

BENDING MAGNET 
The shape function of the power distribution of a 

bending magnet (BM) is given as [1] 
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relativistic energy 1957Eγ = , and ϕ is the vertical 
opening angle. Assuming a shape function, ( )f γϕ can be 
replaced by a distribution of Gaussian type: 

 ( )
2 2

2
0

exp
2

f γ ϕγϕ
σ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (3) 

As the total linear power density should be in 
equilibrium, the value of standard deviation 0σ must 
satisfy 
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The result yields 
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which is identical to what Kim suggested [2]. The 
power distribution of a bending magnet is of Gaussian 
type along the vertical axis; the fan sweeps over 
7.5o horizontally per dipole. Decreasing the incident 
angle is one design concept to decrease the power density; 
it is therefore common to tilt the heating surface at a small 
horizontal angle. The size of the heated spot along the 
longitudinal direction (beam direction) is thus much 
larger than that in the vertical direction; any slice of the 
temperature distribution along a transverse cross section 
within this region is somewhat similar. Therefore a 2D 
model is sufficient for the analysis. A convective 
boundary condition is assumed on the other side to 
represent water cooling, and an adiabatic condition is 
assumed for the other surfaces.  
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Figure 1: Gaussian heating problem maps to a piecewise       
constant heating problem. 

The 2D steady-state heat equation states that  
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with boundary conditions 
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The temperature solution is given as [3] 
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Applying a Gaussian power distribution produces  
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Coefficients 0C  and mC in equation(10) are given in [3]. 
The corresponding maximum temperature is at the origin 
(0, 0). As the size of the vertical opening is much smaller 
than the heating block, an approximation using a 
piecewise constant heating profile is used, i.e., 

 max( ) ( ( ) ( ))c cq x q H x H xσ σ= − − +  (12) 
in which appears Heaviside function ( )H x ; maxq and 

cσ are the corresponding maximum power density and 
‘effective half-beam size’, respectively. As the total power 
deposited on the heating boundary remains in equilibrium, 
equations (11) and (12) dictate that  
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Two possible options can be made; they are either 
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Figure 2:  Gaussian power  solution vs.  constant  power 
solutions.
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Figure 2 shows the dimensionless maximum temperature 
and the discrepancies between solutions (B), (C) and the 
Gaussian type, Solution (B) is found to have only 2 % 
error whereas (C) is about 5 %. 

UNDULATOR 
In a linear undulator, if deflection parameters k for both 

x and y directions are almost identical, the power 
distribution can be approximated as an asymmetrical 
function. If the cooling block is also a circular one and 
relatively thin, the heating problem becomes simplified to 
a one-dimensional asymmetrical problem 
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in which ( )f r represents the shape of the power. 
Assuming no heat flow on the boundary 0( )r r=  and that 
it remains finite when 0.r = , the solution of equation (16) 
is given as 
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in which 0 0 ,   .h hR r R r
kt kt

= =  ( )I xν and ( )K xν are 

Modified Bessel functions or orderν . An asymmetrical 
Gaussian power distribution simulated for the undulator 
can be expressed as 
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Figure 3: Asymmetrical Gaussian  heating  problem  maps 
to piece-wise constant heating problem. 

Similarly, if a piecewise constant heating power 
replaces a Gaussian type as illustrated in Figure 3, we 
must have 
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Again, two possible options are either 
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Figure 4 shows dimensionless maximum temperature 
rise and fractional error between piecewise constant 
heating and a Gaussian heating profile. 
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Figure   4:  Asymmetrical  Gaussian  heating  solution  vs. 
piecewise heating solution. 

For case (B) the overall average relative error is about 
20 % whereas (C) is 60 %, and, as the beam size increases, 
their discrepancies increase correspondingly.  

DISCUSSION AND CONCLUSION 
Several analytic temperature solutions related to power 

distributions for a bending magnet and an undulator have 
been solved and are presented. The analysis reveals that a 
simplified, piecewise constant, solution for the power 
temperature gives a satisfactory approximation in 
comparison with that of Gaussian type. While performing 
FEM modelling, instead of implementing a fine mesh and 
the associated complicated nodal-surface Gaussian 
heating values, one need only model the heating surface 
with much less meshed element and, subsequently, 
implement only a constant value heat flux maxq within 2

cσ areas.  
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