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Abstract 

This paper describes the results of measurements 

compared with the analysis of errors for a method of 

determining accelerator Twiss and coupling parameters 

from the singular value decomposition (SVD) of beam 

position monitor (BPM) data, taken on a turn-by-turn 

basis for a storage ring in fully coupled transverse beam 

coordinates.  Using the transversely coupled-coordinate 

formalism described by Billing et al[1], the measurement 

technique expands on the work of Wang et al[2], which 

describes the SVD of the same data under the assumptions 

of no transverse coupling of the beam parameters.  This 

particular method of data analysis requires a set of BPM 

measurements, taken when the beam is resonantly excited 

in each of its two dipole, betatron normal-modes of 

oscillation. 

OUTLINE OF BASIC FORMALISM 

In particle accelerators, measurements using BPM’s 

have enabled the observation of properties such as Twiss 

and coupling parameters inferred from the position of the 

beam during the resonant excitation of both dipole modes 

of the beam[3].  The multi-turn position measurements are 

harmonically analyzed to calculate the betatron phase 

advance and some properties of the local coupling. A 

second method, described by Wang et al[2] for the case 

when the accelerator has no transverse coupling, excites a 

beam by an injection kicker and uses a SVD model 

independent analysis (MIA).  This method suffers as the 

damping of the dipole oscillation limits the number of 

turns having sufficient signal amplitude.  Both methods 

are relatively fast, but they require the excitation 

amplitude be known in order to determine the magnitude 

of the  functions and coupling parameters.   

These two methods may be combined by using a 

constant amplitude resonant excitation together with the 

turn-by-turn BPM measurements and a SVD model 

independent analysis.  If additional information about the 

known transport between of some subset of the BPMs is 

utilized, the excitation amplitudes may be calculated.  

This allows the computation of all of the single turn 

transport matrix elements for each of this subset of BPMs 

and other accelerator parameters at all of the BPMs, 

which would not otherwise have been determined. 

The basic measurement and MIA may be summarized 

as follows:  Resonantly excite the beam in first one and 

then the other dipole-normal mode of oscillation, while 

recording the BPM responses as a function of time.  

Create a position-history matrix of the data.  Analyze this 

matrix using SVD to obtain the temporal and spatial 

eigen–modes and eigen values of the BPM response.  Use 

the information from the eigen-vectors to determine some 

of the accelerator parameters at each BPM.  Apply the 

knowledge of the transport between at least on pair of 

BPMs to determine the resonant excitation amplitude and 

all of the one turn transport parameters at these BPMs and 

to determine additional accelerator parameters at all of the 

BPMs.  This analysis[1] is summarized below. 

The data required for this analysis consists of two sets 

of BPM measurements taken for M BPMs on T sequential 

turns for each of the two dipole-betatron normal modes. 

Each data set is formed into a position-history matrix 

containing both x and y coordinates, having a size of T by 

2M (for the M BPMs, sampled on T sequential turns.)  

The position-columns are arranged so that the order of 

elements begins with the x- and then y-position at the first 

BPM, and then through the last BPM. Each matrix 

element is divided by the square root of the number of 

temporal samples per BPM, T, giving the form, 

  

PT  =  
1

T

r 
p 1,

r 
p 2 , ...,

r 
p T( ) 

where the t-th row vector is 

  

r 
p t  =  x1,t ,y1,t , x2,t ,y2,t , ..., xM,t ,yM,t( )  

The SVD method[5] allows the rectangular matrix, P, to 

be written as a product of three matrices, , , and , 

(referred to, respectively, as the temporal, the eigen-value 

and the spatial matrices) 

      

P  =  
T

 =  
i i i

i

modes

 

The rectangular matrix, , of size T by 2M contains all 

zeroes except for a non-zero upper left-hand diagonal of 

singular values, i.   and  contain, respectively, ortho-

normal temporal or spatial eigen-vectors for columns.  

One turn motion in transversely coupled {4 x 4}, x-y 

coordinates may be decomposed into the two transverse 

normal coordinates, A-B, for the beam having the form, 
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Using the normalized version of this form for coupling 

where JA/B t and A/Bt are, respectively, the excitation 

actions and temporal phases on the t-th turn for the A/B 

normal modes, A/B m0 are phase advances for the A/B 
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normal modes from a reference point 0 to detector m and 

C i  j
 is the i,j-th element of the normalized form of the C-

matrix[4], the transpose of (x,y) position vector for the m-

th BPM on the t-th turn (shown for both excitations) is 

px
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                + A m JBt C 12, m sin Bm 0 + Bt( )

m Bm JBt cos Bm 0 + Bt( )
         + Bm JA t C 22, m cos A m 0 A t( )
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When either mode is excited, each of these components 

may be written in the form,
 
 

m sin m + m t( ). 

To identify the four column eigen-vectors contained in 

, which describe the dipole motion of the beam in its 

two normal modes, construct the spatial covariance 

matrix, K = PT  P , where the i-th and j-th element of K 

may be written as 

Ki j  =  
2

T
Jt

t=1

T

i j sin i + i t( )sin j+ j t( )

  =  
1

T
Jt

t=1

T

i j cos i j+ i j( ) cos i + i + j+ j 2 t( )[ ]

  =  Jt i j cos i j+ i j( )

 

The last equality is correct, if the total number of turns, T, 

is sufficiently large that the second term of the second line 

averages to zero, giving a result with the action averaged 

over the T turns, Jt . The K matrix has the property, 

K  =  T T( )
T

T T( )  =  T  

So using the k-th column vector in , 
    
r 
 
k
, and since 

T
 

is diagonal, this becomes an eigen-value equation, 

K
r 
 k  =  k

2 r 
 k  

Solving the characteristic equation yields two solutions ± 

and the following forms for the spatial eigen-vector, 
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where sin(cos) functions correspond to the +(-) subscript, 

and 0,+ is a phase which corresponds to +.  Similarly the 

corresponding temporal eigen-vectors, ±, 
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The i-th components of the spatial eigen-vectors give 
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where i
T
 represents the unit row vector with the i-th 

component equal to unity (to extract the i–th element of 

the eigen vector.)  In these expressions i+ i contains the  

betatron phase advance and the tangent of the ratio of two 

of the C  elements, while i has 
1/2

 and the magnitude of 

the same two coupling-matrix elements and Jt is set by  

the scale of the excitation amplitude.  From these 

expressions ratios of ’s at the BPMs are determined, 

however the inclusion of BPMs a known distance apart 

allows fixing the absolute scale of the ’s[1]. 

ESTIMATED ACCURACY FROM 

SIMULATION STUDIES 

The measurement errors of the BPMs will limit how 

accurately any of the accelerator parameters may be 

determined. One approach has been to calculate the 

minimum uncertainty in some particle accelerator 

parameters based on simply using the uncertainty for each 

BPM measurement[1]. These estimated uncertainties for 

the parameters are then assumed to require an additional 

scaling factor to yield the actual resulting uncertainties 

from an SVD analysis of data in the presence of the BPM 

errors, x. If the A dipole-mode is driven, the fractional 

error of beta-function for data sets of N measurements is 
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where  is the scaling factor. Likewise, the error in the C-

matrix elements may be established for the same dipole-

mode using the displacements from the “out-of-plane” 

component of the oscillation (having BPM errors y) as 

B

1
2  C 12,m

22 
 
  

 
  = 2   

y

N  JA

1
2

 

where ’ is the scaling factor and 

C 12,m
22   C 2 2,m

2
+C 12,m

2  

To place bounds on the values for  and ’, simulations 

were undertaken using one set of CESR optics, 

CHESS_20050617, which contains a region of large 

coupling surrounding the CLEO solenoid magnet.  The 

simulations yielded detailed comparisons of the design 

accelerator parameters vs. the parameters determined 

from the SVD analysis at 14 (of the 102 total) BPMs, and 

this is considered to be a representative sampling as the 
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set includes detectors within the coupling-compensation 

region around the high energy physics solenoid magnet. 

To study the accuracy of the SVD method, we first 

examined the values of ’s that were calculated.  The 

analysis algorithm typically produces five values larger 

than the others.  The largest value for  is associated with 

a spatial eigen vector, which is essentially a small 

constant offset for the position (even though the data set 

had its average value subtracted initially.)  The next two 

larger values of  are the + and - values for the eigen 

mode of the beam that was intended to be excited.  The 

second pair of eigen values are those associated with the 

beam’s other eigen mode, which was excited slightly due 

to coupling.  FFTs of the temporal eigen modes to find the 

oscillation frequency confirmed which of the eigen values 

of the four belong to which of these two pairs.  The 

remaining eigen values cluster into two groups, each 

having different magnitudes.  By changing the position 

noise added to the data, we determined that the set with 

the larger magnitudes scales with the noise amplitude, 

while the other set of eigen values have magnitudes 

representing the round-off errors in the calculations. 

The analysis calculated the average value for  and the 

standard deviation from the ratio of the calculated 

fractional error in 
2

 and the known excitation and 

position noise levels for each BPM at each point in the 

tune plane for 1024 turns of data.  Figure 1 is a plot of the 

standard deviation of the average value for  for all 

BPM’s at each point in the tune plane for the excitation of 

dipole mode B. Regions around the half integer and 

integer resonances have been removed from the plot, 

since generally large values for the standard deviation  

occur near the half integer, the integer or the coupling 

resonance; otherwise  remains near unity with smaller 

undulations visible on a finer scale.  The undulations 

occur because the second term, which was neglected, in 

the expression for Kij (above) does not completely 

average to zero at all points within the tune plane, instead 

it scales as 1/T.  To obtain a result that is typical for the 

vast majority of the area within the tune plane  was 

averaged at all BPMs at all points in the tune plane away 

from the half integer, integer and coupling resonance by 

removing tune points when the value of  deviated by 

more than 3 standard deviations from the average. By 

analyzing 1024 turns of data we obtained results for  and 

’ consistent with unity when both A- and B-modes were 

excited.  Analyzing the same set of simulated data for 256 

turns gives values for  and ’ larger by approximately a 

factor of three, close to the expected scaling from the 

underlying interference pattern in the tune plane. 

RESULTS OF MEASUREMENTS 

Actual 1024 turn data was taken in CESR for a subset 

(8) of the BPMs, capable of turn-by-turn measurements, 

when the beam was excited in each of the betatron dipole 

modes of oscillation.  At the same time an independent set 

of phase and coupling measurements were made as a 

reference for “actual” accelerator optics.  From the known 

measurement uncertainties for these BPMs (30 μm) and 

the approximate excitation of 1 mm peak at a ’s equaling 

35 m, we estimate an expected uncertainty of 7x10
-3

 for 

C  elements, /  and equivalently phase advance errors 

for these measurements.  Using MIA, we compared 

differences in phase advances between BPMs and C  
elements between different sets of data and found RMS 

differences of 5.1x10
-2

 and 1.1x10
-2

 for the A- and B-

mode excitations, respectively, and RMS differences of 

1.4x10
-2

 for C 12 .  Although the A-mode errors are larger 

than expected by a factor of 5, the other results are 

consistent with the expected uncertainties.  However, 

when comparing the BPM-to-BPM phase advances 

between MIA data and the conventional phase 

measurements used at CESR, we found RMS differences 

of 1.5x10
-1

-much larger than expected.  Although we 

suspect this is an indication of possible systematic 

differences between these techniques, further study will 

wait until after the installation of turn-by-turn readouts for 

the remainder of the CESR BPMs is completed. 
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Figure 1. Plot of the standard deviation of a fit for 
 at each tune plane point vs. tunes for mode B for 

1024 turns of data. 
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