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bstract
An energy recovery linac (ERL) is one of the 

candidates for an upgrade of the Advanced Photon Source 
(APS). In addition to the APS ring and full-energy linac, 
our design also includes a large turn-around arc that could 
accommodate new x-ray beamlines as well. In total, the 
beam trajectory length would be close to 3 km. The ERL 
lattice has strong focusing to limit emittance growth, and 
it includes strong sextupoles to keep beam energy spread 
under control and minimize beam losses. As in storage 
rings, trajectory errors in sextupoles will result in lattice 
perturbations that would affect delivered x-ray beam 
properties. In storage rings, the response matrix fit 
method is widely used to measure and correct linear 
lattice errors. Here, we explore the application of the 
method to the linea

INTRODUCTION
Linear optics measurement and correction using the 

response matrix fit method is well known and widely used 
on modern circular machines. The purpose of this work is 
to simulate the ap

osed beamline. 
Theoretically, there is no big difference between 

response matrix measurement for closed and non-closed 
beamlines. The orbit equations are well-known and look 
similar (top equation is for non-closed trajectory an
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The measured trajectories in both cases depend on beta 
functions and phase advances and therefore could be used 
to derive linear optics. The main practical difference is 
that in the case of a non-closed beamline, the respon

.

se
matrix is triangular with zeros in the top right triangle. 

nclude 
sextupole . Table 1 
lists th

d in Calculatio

SIMULATION DETAILS 
At the APS, we have been using the response matrix fit 

method for many years [1]. We added to our existing 
program an option for working with non-closed 
trajectories. From our experience, we know that at APS 
the main sources of focusing errors are non-zero orbits in 
sextupoles, and we also know that the focusing errors 

from sextupoles cannot be the precisely represented by 
nearest quadrupoles [2]. Therefore we decided to i

displacements in the error simulation
used for simulae set of errors that was 

: Errors Use
tions. 

Table 1 ns
Quadrupole gradient error 0.1 % 
Quadrupole tilt 0.001 rad 
Sextupole X and Y displacement 1 mm 
Corrector calibration error 5 % 
Corrector tilt 0.001 rad 
BPM calibration error 2 % 
BPM tilt 0.001 rad 
BPM measurement noise 1 m
Sextupole displacements were chosen rather large 

because trajectory errors in sextupoles are defined not by 
the accuracy of sextupole alignment but by the accuracy 
of the nearest BPM offset, which could be large. The 
err

rin

ur simulations, we used 27 correctors 

ors were generated using Gaussian distribution with 2 
sigma limit. 

For optics correction simulation we used only the APS 
portion of the ERL because the turn-around arc design has 
not been finalized to a level of BPM and corrector 
locations. The lattice of the APS portion is described in 
[3]. The main difference from the present APS storage 

g lattice is zero dispersion in ID straight sections to 
decrease electron beam size dependence on energy spread. 

Special attention was paid to the choice of correctors 
used for response matrix measurement in our simulations. 
The APS storage ring has 8 correctors and 11 BPMs per 
sectors (in most sectors). Presently, for real measurements 
we use only 27 correctors in each plane (out of 320) 
evenly distributed along the ring and all BPMs. We limit 
the number of correctors in order to save measurement 
time and also to limit the size of the fitting problem. If all 
the correctors were used, the size of the response matrix 
derivative would be 15 Gb, which would be too big. Our 
experience shows that with 27 correctors we still have 
enough data for an accurate fit. In the case of a circular 
machine, the location of correctors used for the response 
matrix measurement is not important as long as they are 
separated by some phase advance. However, the situation 
is different for a non-closed beamline where measured 
trajectory is affected only by elements that are located 
after the steering magnet. Therefore, for a non-closed 
beamline, different steering magnets provide a different 
amount of useful information. Obviously, one would want 
to use as many steering magnets in the beginning of the 
beamline as possible while keeping them at some phase-
space distance. For o
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ent and optics correction (elegant

rrected using two correctors per sector 

n the corrected orbit; 

applied to correct the 

es of the relative beta function 
difference over all cases is 0.71 for the horizontal and 
0.47 for the

s 0.03 for 

 each plane spread over the first six sectors (out of forty) 
and none after that. 

The following procedure was used to simulate the entire 
process of measurem
[4] was used for all beta function and trajectory 
calculations): 

elegant parameter file is generated with element 
errors;
trajectory is co
(because sextupole displacements can cause large 
orbit errors);  
“measured” response matrix and dispersion are 
calculated o
response matrix fit is calculated (dispersion 
included); 
quadrupole gradient errors opposite to those found in 
the response matrix fit are
optics, and the resulting beta functions are compared 
with the ideal beta functions 

The entire process was run 100 times with different 
error seeds. Figure 1 shows typical beta functions and 
dispersion before beta function correction. For each case, 
we have calculated the relative beta function difference 
between actual and ideal beta functions and its rms value 
(the rms value is calculated using all beta function points 
along the beamline). Figure 2 shows a histogram of the 
rms values of relative beta function errors before 
correction. The histogram is calculated over the set of 100 
different error seeds. For every seed, the relative beta 
function error was calculated, and then the rms was 
calculated using all beta function points along the 
beamline. Average rms valu

 vertical plane. 

 CORRECTION RESULTS 
Each APS quadrupole magnet has separate power 

supply. Therefore, the straightforward way to correct the 
optics is to apply opposite quadrupole gradients. 
However, this method has some drawbacks that prevent 
us from using it in real life. To achieve the best possible 
response matrix fit, we use as many singular values in the 
matrix inversion as possible. This might lead to the 
appearance of large quadrupole errors in the solution. 
After we calculated the beta functions using quadrupole 
errors from the response matrix fit, we use the inverse 
beta function response matrix to correct the difference 
between measured and ideal beta functions. We also 
adjust the number of singular values in this inversion until 
we get satisfactory correction accuracy while still keeping 
quadrupole changes small. This allows us to minimize 
real quadrupole changes during optics correction at the 
APS storage ring. However, these arguments are not 
important for the optics correction simulation here, so we 
used the straightforward approach to keep our simulations 
simple. Figure 3 shows a histogram of the rms of relative 
beta function errors after correction. Average rms of the 
relative beta function difference over all cases i

the horizontal and 0.02 for
shows typical lattice function

the vertical plane. Figure 4 
s after correction.  

Figure 1: Typical beta functions before beta function 
correcti vertical, 
bottom

on. Top left – horizontal, top right – 
 – dispersion. 

Figure 2: ror rms 
before

 Histogram of the relative beta function er
 beta function correction.  

Figure 3: Histogram of the rel
after beta function correction

ative beta function error rms 
. 

Figure 4: Typical beta functions after beta function 
correction.

One can ask why the correction is not perfect. Two 
reasons are obvious – due to BPM noise the response 
matrix measurement is not accurate and due to the fact 
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f the measured beamline, one might use several 
co

ces. We have tested and confirmed that one can 
ly a part of the non-closed 

 all insertion devices for all simulated cases. 
Th

Results are presented as red curves 
in Figure 6. For this case, the average increase in vertical 
beam size is only 7%. 

that the focusing errors come from sextupoles but are 
corrected using quadrupoles in different locations. These 
reasons are likely to explain short-scale perturbations in 
beta functions. But we can also see a long-scale smooth 
variation in the horizontal beta function in Figure 4. The 
reason for that is inaccurate determination of focusing 
errors in the very beginning of the lattice because the first 
quadrupoles and sextupoles have only a few trajectories 
going through them. We have confirmed that argument by 
adjusting initial beta functions at the entrance of the 
lattice. A small change in initial beta function conditions 
allows correcting the long smooth variation seen on top of 
the left plot of Figure 4. To improve accuracy for the first 
elements o Figure 5: An example of vertical dispersion before and 

after correction. rrectors upstream of the measured portion of the 
beamline. 

During our simulations, we have also found that if the 
focusing errors of the lattice are large enough, sometimes 
the response matrix fit does not converge because the 
initial approximation (ideal lattice) is too far from the 
lattice with errors. We have tested the following 
procedure, which helps in the case of a convergence 
problem: split the lattice into pieces, perform a response 
matrix fit piece by piece (not necessarily to be done to a 
very accurate level) and apply corrections from piece-by-
piece solutions. After this step, the new lattice with errors 
is closer to the initial lattice and therefore can be solved 
without problems. This piece-by-piece approach will 
probably have to be used anyway when correcting optics 
of the entire ERL just to avoid long measurements and 
huge matri

Figure 6  Left – histogram of effective vertical emittance 
at ID locations; right – histogram of vertical beam sizes at 
the same points. Black curve corresponds to correction 
with 20 skew quadrupoles, red curve – with 80 skew 
quads. 

CONCLUSION 
We have simulated optics correction for a non-closed 

beamline using the response matrix fit. As example, we 
used the suggested APS lattice in ERL mode. We have 
found that the response matrix fit can be used to measure 
and correct a linear lattice successfully. We have 
confirmed that one can measure and correct only a part of 
a non-closed beamline, which will be useful for large 
ERLs. We have also concluded that having only 20 skew 
quadrupole correctors (as there are presently at APS) is 
not enough for coupling correction. Simulations with 80 
skew quads showed good correction results. 

measure and correct on
beamline.

Coupling Correction 
APS has only 19 dedicated skew quadrupole correctors. 

This number is adequate for the purpose of coupling 
correction to a level of 1% for the storage ring operation 
mode. However, this turns out to be insufficient for 
coupling correction of the small ERL beam – spurious 
vertical dispersion could not be corrected well enough, 
and that increases vertical beam size and effective vertical 
emittance. Figure 5 shows vertical dispersion before and 
after correction; one can see little improvement after the 
correction. The effect of not fully compensated coupling 
on the beam size and effective emittance can be seen in 
the histograms in Figure 6 (black curve). These 
histograms are calculated using beam parameters at 
locations of

The author would like to thank M. Borland for useful 
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