
SPECTRAL-ELEMENT DISCONTINUOUS GALERKIN (SEDG)
SIMULATIONS WITH A MOVING WINDOW ALGORITHM FOR

WAKEFIELD CALCULATIONS

Misun Min,∗ Paul F. Fischer,
Mathematics and Computer Science, Argonne National Laboratory, Argonne, IL 60439, USA

Abstract

We developed a moving window algorithm for wakefield
calculations for our SEDG time-domain electromagnetic
code NekCEM. When the domain of interest is around a
moving bunch within a certain distance, one does not need
to carry out full domain simulations. The moving window
approach is a natural choice for reducing the computational
cost of the conventional low-order methods such as the
finite-difference time-domain method [6]. However, there
have not been studies on high-order methods, especially
the SEDG method, based on the moving window approach.
We implemented a 3D moving window option for wake-
field calculations on various conducting cavities including
a 9-cell TESLA cavity. We demonstrate the performance
of the SEDG simulations on moving window meshes.

INTRODUCTION

The Argonne-developed software NekCEM [5] is an
electromagnetic solver featuring accurate and efficient
computations with high performance in parallel. It uses the
spectral-element discontinuous Galerkin (SEDG) method
based on body-fitted spectral-element hexahedral meshes.
We have demonstrated NekCEM on full-domain simula-
tions for wakefield and wakepotential calculations on var-
ious accelerator components [1, 2]. Here we discuss the
extension of our SEDG code for wakefield computations
based on a moving window algorithm implemented in
NekCEM. Computational results are demonstrated for tube
and TESLA cavities.

FORMULATIONS

This section addresses the governing equations, weak
formulations for SEDG scheme, numerical discretizations,
and initial conditions.

Maxwell’s Equations

We consider the Maxwell equations as the governing
equation:

μ
∂H
∂t

= −∇× E, ε
∂E
∂t

= ∇× H− J (1)

∇ ·E =
ρ

ε
, ∇ · H = 0, (2)
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where E = (Ex, Ey, Ez)T , H = (Hx, Hy, Hz)T , and J
represent the electric, magnetic, and current fields and μ, ε,
and ρ denote the free space permittivity, free space perme-
ability, and space charge, respectively. The current source
J = (0, 0, Jz)T and space charge ρ are defined for an on-
axis Gaussian beam moving in the z-direction:

Jz = cρ and ρ = ρ(r)ρ(z − ct), (3)

where c is the speed of light and ρ is defined by the Gaus-
sian distributions as

ρ(r) =
1

σr

√
2π

exp
(
− r2

2σ2
r

)
for r2 = x2 + y2, (4)

and

ρ(z − ct) =
1

σz

√
2π

exp
(
− (z − ct)2

2σ2
z

)
. (5)

We can rewrite equations (1) as

Q
∂q
∂t

+ ∇ ·F(q) = S (6)

by defining the field vector q and the flux F(q)

q =
[

H
E

]
, F(q) =

[
ei × E
−ei × H

]
, (7)

S =
[

0
−J

]
, and Q = diag(μ, μ, μ, ε, ε, ε). (8)

Now we consider our computational domain Ω. We de-
compose the domain Ω into nonoverlapping hexahedral el-
ements Ωe such that Ω = ∪E

e=1Ω
e. We formulate a weak

form on each Ωe by multiplying a test function φ to equa-
tion (6) and integrating it by parts as follows:

(
Q

∂q
∂t

− F(q)∇ · φ − S, φ

)
Ωe

= (−n̂ ·F, φ)∂Ωe . (9)

We introduce a numerical flux F∗ by replacing the flux
term F on the right-hand side of the equation (9). Inte-
grating by parts again gives

(
Q

∂q
∂t

+ ∇ ·F(q) − S, φ

)
Ωe

= (n̂ · [F− F∗], φ)∂Ωe ,

(10)
where the numerical fluxes F∗ are chosen as defined in [4].

TH5PFP037 Proceedings of PAC09, Vancouver, BC, Canada

3278

Beam Dynamics and Electromagnetic Fields

D05 - Code Developments and Simulation Techniques



Numerical Scheme

We seek the local solutions qN(
Q

∂qN

∂t
+ ∇ · FN − SN, φ

)
Ωe

(11)

= (n̂ · [FN − F∗], φ)∂Ωe , (12)

where the local solution qN on each Ωe is defined as

qN(x, t) =
N∑

j=0

qj(t)Lj(x). (13)

assuming that FN and SN are polynomial representations
of the flux and the source, respectively. Here qj(t) is the
solution at N grid points xj on Ωe, and Lj(x) is the three-
dimensional Legendre Lagrange interpolation polynomial
of degree N associated with the N = (N + 1)3 nodes
[3]. The local discontinuous test function is chosen to be
φ = Li(x). Gauss-Lobatto quadrature is applied for the
spatial integration. For the time advancing, we use the
fourth-order Runge-Kutta method.

Initial Conditions

To provide the electromagnetic fields at an initial time
step t = 0 in the presence of the Gaussian beam, we solve
the Poisson equation in two dimensions at the cross section
of the initial beam position z = z0,

∇2Φ(r) = −ρ(r)ρ(z − z0 − ct)
ε

. (14)

In fact, the two-dimensional electric fields are immediately
available at the cross section of all the values on z, which
defines the initial conditions in three dimensions for the
ultra-relativistic limit.

ALGORITHMS

Here we discuss our moving window algorithm based on
the spectral-element meshes. In the z-direction we restrict
each element to be of equal length l. We denote the length
of a moving window frame as L. We set M as the number
of elements in z such that L = M ∗ l. We choose the time
step to be

Δt = l/(cN ∗ mstep) < CFL min(Δx)/c, (15)

with a proper number for mstep. In order to define the
Gaussian beam properly, the moving frame size has to be

10 ∗ σz < L. (16)

Moving Window Meshing

Assume that we have full-mesh information for the tube
or TESLA cavity. As the beam moves in the positive z-
direction, we update the field information as full-domain
simulations in the first frame. Once the beam moves a

distance of l = N ∗ mstep ∗ (cΔt), we construct a new
mesh for the next frame by reading partial information of
the next frame from the existing full mesh data. This ap-
proach makes our algorithm very efficient. Figure 1 shows
moving window simulations for a tube and the magnitude
of the electric field distribution in time with three moving
window frames being used. For the field information we
copy the electromagnetic fields only in the middle zone Γ,
discard the data in the back zone of the beam ΓB (dashed
line box in white), and add field values as zeros for the front
zone ΓF (dashed line box in black).

Figure 1: Moving windows for tube and the magnitude of
the electric field at time t = 0, l/c, and 2l/c.

Boundary Conditions

Perfectly electric boundary conditions are applied for the
transverse direction. In the longitudinal direction z, bound-
ary conditions need not be specified. In the front of the
beam moving at the speed of light, there is no field defined.
The fields in the back of the beam do not catch any field in-
teraction that will happen in the next moving frame. Thus
one does not need to assign any boundary conditions in the
z-direction for each moving frame.

COMPUTATIONAL RESULTS

Here we demonstrate the efficiency of our moving algo-
rithm. The CPU time depends on the length of the moving
frame.
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Performance

To demonstrate the performance of the moving window
algorithm, we compute the case with wakefield calcula-
tions for a tube mesh with the total number of the elements
E = 900 with 9 elements in transverse direction and 100
elements in longitudinal direction. Computations are per-
formed on an Intel XEON processor with 2.40 GHz. Fig-
ure 2 plots CPU time vs. the number of elements M in a
moving window frame with increasing M = 5, 15, 45, 100.
The full size of the domain in z is M = 100. The figure
shows that CPU time decreases linearly depending on the
length of the moving frame size. The polynomial order is
fixed with N = 6. This result implies that one can obtain
better efficiency and accuracy with the high-order method
with the moving window option presented in this paper.
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Figure 2: CPU time vs. moving frame length in log scale,
showing that CPU time increases linearly depending on the
length of the moving frame. The number of elements in
a moving frame is M = 5, 15, 45, 100 (left); the ratio of
the moving window frame size over the full length of the
domain in dashed line, showing that the ratio is close to the
ideal case in solid line (right).

Discussion

Figure 3 shows TESLA cavity moving window meshes
in time. Because of the restriction on the z-direction that
the element sizes must be equal, our TESLA mesh is highly
deformed in the z-direction, with sharp angles around the
transverse boundaries. We plan to improve the mesh qual-
ity for TESLA cavity in future work. We will parallize
the moving window and carry out performance studies for
large scale simulations.

CONCLUSIONS

We have implemented a moving window algorithm in
our SEDG electromagnetic solver NekCEM. Equipped
with the moving window option, high-order methods are
comparable to existing lower-order wakefield calculation
codes. Our moving window algorithm can reduce the
CPU time by a factor of the moving frame size over the
full length of the domain. Once parallelized, the moving
window algorithm with high-order simulations will be a

Figure 3: Moving windows for TESLA cavity at time t =
0, l/c, 2l/c, and 3l/c.

promising tool to track a 1 ps beam moving through meter-
scale cavities.
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