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Abstract

Coupled bunch longitudinal stability in the presence of
high frequency impedances is considered. A frequency do-
main technique is developed and compared with simula-
tions. The frequency domain techniqe allows for absolute
stability tests and is applied to the problem of longitudinal
stability in RHIC with the new 56 MHz RF system.

THEORY

The problem of bunched beam longitudinal stability has
been discussed many times [1–12]. In the present treat-
ment it is shown that one can extend dispersion integral
techniques to longitudinal modes with complicated internal
bunch structure. We assume M identical equally spaced
bunches. Let θ denote the azimuth, which increases by
2π each turn, T0 be the synchronous revolution period and
ω0 = 2π/T0 be the angular revolution frequency. Take
φ = θ − ω0t as the longitudinal coordinate and consider a
driving voltage V̂ exp(i(k0M + s)φ− iΩt) where s is the
coupled bunch mode number and Ω is the fractional drive
frequency. In amplitude angle coordinates φ = r sinψ and
the Vlasov equation reads

−iΩF1 + ωs(r)
∂F1

∂ψ
=
∂H1

∂ψ

dF0

dr
(1)

where F0(r) + F1(r, ψ) exp(−iΩt) is the normalized dis-
tribution function for the first bunch,

∫
F0(r)2πrdr = 1.

The perturbation hamiltonian is due to the applied voltage
and the beam induced voltage

H1 =
η̄qω0

2πrωs0

⎧
⎨

⎩
V̂ ei(k0M + s)r sinψ

i(k0M + s)

−
∑

k �=0

ρkZk

i(kM + s)
ei(kM + s)r sinψ

⎫
⎬

⎭
(2)

where η̄ = ω0η/(β2E0), η is the frequency slip factor, β =
v/c, E0 is the average particle energy, q is the charge per
particle, ωs0 is the small amplitude synchrotron frequency,
Zk = Z[ω0(kM + s) + Ω], and

ρk =
qω0NM

2π

∫
rdrdψF1(r, ψ)e− i(kM + s)r sinψ,

(3)
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where there are N particles per bunch.
To solve the system take

F1(r, ψ) =
∑

� �=0

R�(r)ei�ψ (4)

where � is the synchrotron mode number. Insert eq (4) into
eq (1), multiply by exp(−imψ)dψ/2π and integrate over
ψ,

i [mωs(r) − Ω]Rm(r) =
∮
dψ

2π
e−imψ

∂H1

∂ψ

dF0

dr

=imF ′
0

∮
dψ

2π
e−imψH1(r, ψ)

=F ′
0

η̄qmω0

2πrωs0

{
V̂ Jm[(k0M + s)r]

k0M + s

−
∑

k �=0

ρkZk

kM+ s
Jm[(kM+ s)r]

⎫
⎬

⎭
(5)

Now define

Cm,p =

φ̂∫

0

rdrRm(r)Jm[(pM + s)r],

so that
ρk = qω0NM

∑

� �=0

C�,k.

Inserting this is eq (5) gives

Cm,p =
η̄q2ω2

0MN

2πωs0

∑

k

Zk

kM + s
m

φ̂∫

0

drJm[(pM + s)r]Jm[(kM + s)r]
− iΩ + imωs(r)

F ′
0(r)

∑

� �=0

C�,k + drive. (6)

Summing over m gives the equation for the bunched beam
transfer function

ρp − η̄q2ω2
0MN

2πωs0

∑

k

Zk

kM + s
ρk

∑

m

m

φ̂∫

0

drJm[(pM + s)r]Jm[(kM + s)r]
− iΩ + imωs(r)

F ′
0(r)

= drive. (7)
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The integral in equation (7) can be singular if Im(Ω) =
0. For this case I consider Ω = Re(Ω) + i0+, a small
positive imaginary component corresponds to an adiabatic
turn on of the driving force. Equation (7) is also valid for
finite growth rates with Im(Ω) > 0.

With Im(Ω) = 0+ it is possible that eq (7) will not have
a solution for vanishing drive. This will be the case when
the motion is damped or when the system is exponentially
unstable, and this is the key to using it for predicting beam
stability. In particular notice that (7) is of the form

[1−NZ(Ω)]P = D, (8)

where N is the number of particles per bunch, P = ρp, Z
is the rest of the dispersion matrix, and D is the drive. For
small N , P ≈ D and the system is stable. As N grows
the matrix 1 − NZ(Ω) changes until, for some Ω = Ωc,
det(1 − NtZ(Ωc)) = 0, where Nt is the threshold inten-
sity for coherent frequency Ωc. Therefore, to use (7) in a
stability analysis one plots det(1 − NZ(Ω)]) on the com-
plex plane as a function of Ω. Strictly speaking these plots
should also be made for all values of N less than the value
of interest. If none of the plots encircle the origin the ma-
trix will have an inverse for the intensity of interest and the
system will be stable. If the curve goes through the origin
then the frequency Ω is an eigenfrequency. Similar work
using just one matrix element was considered in [9].

To connect this formalism to the usual results note that
retaining a single value of m in the summation of (7) and
making the approximation Jm(x) = (x/2)m/m! leads to a
matrix of rank one. The resulting coherent frequencies are
similar to the handbook formulas [6].

APPLICATIONS

The theory in the previous section has been implemented
in the fortran code NYQUIST. I assume the frequency
shifts will be small so that only one synchrotron mode at
a time needs to be considered. That is to say, the sum over
m in (7) is replaced by a single value. The variation of
synchrotron frequency with r is taken as ωs(r) = ωs0[1 −
(hr/4)2] where h is the harmonic number. The infinite sum
over k in (7) is truncated according to |f0(kM + s)| <
fmax. The impedance is modeled as a sum of resonators
plus a constant, broad band Z/n. The dispersion integrals
are treated numerically using a uniform grid in the action-
like variable I = (hr)2. For Im(Ω) = one takes

1
0+ − iΩ + imωs0I/16

=

iPV

{
1

Ω −mωs0I/16

}

+ πδ (Ω −mωs0I/16) .(9)

By using an action grid In = nΔI and a frequency grid
Ωk = kΔImωs0/16, the delta function always corre-
sponds to a lattice point and the principle value is just
a sum with the single point corresponding to the reso-
nant denominator removed. For Im(Ω) > 0 we take
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Figure 1: Comparison of multiparticle simulations and the
threshold of NYQUIST.

Ωk = iε + kΔImωs0/16 to keep as much symmetry as
possible. Also we take ΔImωs0/16 <∼ ε/5 which corre-
sponds to a 1.3% fractional error between summation and
integration. The fractional error was estimated using (for
a = 5)

∞∑

k=−∞

a

a2 + k2 =
∞∑

k=−∞
πe−a|k| = π +

2π
ea − 1

.

The accuracy and convergence of NYQUIST has been
benchmarked using simulations. Figure 1 shows the result
of simulations of four bunches with 20,000 macroparticles
each. The impedance consists of a broad band Z/n and a
narrow band resonator. The third revolution hamonic of the
beam current is plotted as a function of time. For the red
curve labeled multi2 the intital phase space distribution of
macroparticles was regular and the charge per macroparti-
cle was adjusted to obtain the desired line density. For the
blue curve labeled multi3 all macroparticles had the same
charge and the initial phase space distribution was chosen
to give the correct line density. The two curves agree rather
well. The green curve shows an exponential with a 2.4s−1

growth rate.
Figure 2 shows results from NYQUIST with a 2.4s−1

growth rate for different values of fmax. All come close
to the black dot at the origin but the agreement is not
perfect. The equivalent length of the smoothing function
was τs = 5 ns. The corresponding upper frequency is
fmax = 1/2τs = 100 MHz so the the black curve is clos-
est to the simulation. Figure 3 shows NYQUIST results
near the origin for fmax = 100 MHz and a growth rate
of 1.2s−1 is found. This is a factor of 2 smaller than the
simulation and it is possible that the smooth spectral cut-
off used in the simulation behaves differently than truncat-
ing the matrix. Also note that the linear rf growth rate for
this system is 4.8s−1 so the effects of Landau damping are
large. The code has been checked for internal consistency.
In particular, the long wavelength limit has been checked
and agrees quite well with the usual formulas [3, 4].

Now turn to the new 56 MHz cavity in RHIC. To get
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Figure 2: NYQUIST threshold curves versus upper fre-
quency cutoff. Im(Ω) = 2.4s−1.
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Figure 3: Curves for fmax = 108s−1 and different growth
rates.

an idea of the worst case scenario, all the 56 MHz modes
with a resonant frequency less than 600 MHz where shifted
in frequency to drive the same coupled bunch mode with
s = 708. In RHIC we operate with a 120 bunch sym-
metric fill pattern, minus an abort gap. With an upper fre-
quency of 4 GHz this leads to a rather long execution time.
The computations were sped up by assuming 720 bunches
and dividing all narrow band impedances by 6. This led
to a matrix size of 143 × 143 which executed in a reason-
able time on a workstation. Results are shown in Fig. 4.
The large broad band impedance with Z/n ∼ 3Ω appears
to dominate the threshold. This in turn leads to a strong
bunch length dependence which has been appreciated for
some time [11]. Finite matrices in NYQUIST follow from
the approximation of a band limited impedance. Typically,
other techniques employ a basis expansion which has dif-
ferent and possibly inferior [12] convergence properties.

CONCLUSIONS

Landau damping with high frequency impedance has
been explored by examining the stability of the bunched
beam transfer function. This technique allows for abso-
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Figure 4: Plot of the determinant for Im(Ω) = 0 and 1 ×
1011 protons with 2.4 MV on the 56 MHz cavity. Bunch
lengths with σt = 1.6 ns, 1.8 ns and 2.2 ns are shown.
Also, the quadrupole (m = 2) mode for the 1.8 ns mode is
shown.

lute tests of bunched beam stability, even in the limit of
vanishingly small growth rate. If one can differentiate be-
tween short and long range wakes it is possible to reduce
computation time by doing calculations for closely spaced
bunches with a reduced long range wake. Finite matrices
follow from the assumption of a band limited impedance as
opposed to the truncation of a basis expansion.
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