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Abstract
In 1958, Courant and Snyder analyzed the problem of

alternating-gradient beam transport and treated a model

without focusing gaps or space charge. Recently we

revisited their work and found the exact solution for

matched-beam envelopes in a linear quadrupole lattice

[O.A. Anderson and L.L. LoDestro, Phys. Rev. ST Ac-

cel. Beams, 2009]. We extend that work here to include

the effect of asymmetric drift spaces. We derive the so-

lution and show exact envelopes for the first two solution

bands and the peak envelope excursions as a function of the

phase advance σ up to 360◦. In the second stable band, de-

creased occupancy requires higher focusing strength. For

symmetric gaps, this accentuates the remarkable compres-

sion effect predicted for the FD (gapless) model.

INTRODUCTION
In their classic paper, Courant and Snyder [1] studied the

beam-envelope dynamics of a circular machine with neg-

ligible space charge, piecewise constant focusing, and no

drift spaces (focusing gaps); they used an expansion in fo-

cusing strength to obtain an approximate solution for the

matched envelope. The same case, but for a straight ma-

chine, was recently analyzed and an exact solution was ob-

tained [2]. In the present paper we extend that recent anal-

ysis to include asymmetric focusing gaps, still assuming

negligible space charge. Of course, particular cases with

asymmetric gaps have long been studied via computer sim-

ulations; numerical examples with space charge are found

in Refs. [3] and [4]. The motivations for finding the exact

analytic envelope solution are: (1) performing parametric

studies and studying the properties of the solutions such

as extrema, limits, etc.; (2) facilitating study of envelope

functions in the higher solution bands, where approxima-

tion methods fail and simulations become difficult. In par-

ticular, we are interested in the effect of drift spaces and

asymmmetry on the remarkable second-band beam com-

pression effect previously reported for the FD case [2].

Instead of solving the envelope equations directly, as we

did in Ref. [2], we use here the linear single-particle equa-

tions and the phase-amplitude method to get the exact enve-

lope functions and phase advances. To indicate briefly that,

in our model, the periodic lattice of quadrupole doublets

has piecewise-constant focusing but may have unequal gap

lengths, we introduce the abbreviation FoDO.
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FOCUSING MODEL
We assume a focusing function κ(z) that is periodic over

a lattice with period 2L, so that κ(z + 2L) = κ(z). We

take κ(z) to be piecewise constant with value +κmax in

the focus and −κmax in the defocus sections, which have

equal length. For convenience throughout, we define

k ≡ √κmax . (1)

Our FoDO model is then described for the xz-plane by

Eqs. (2) and Fig. 1:

κ(z) ≡

⎧⎪⎪⎨
⎪⎪⎩

+k2, 0 < z < ηL;
0 , ηL < z < ηL + d1;
−k2, ηL + d1 < z < 2ηL + d1;
0 , 2L− d2 < z < 2L.

(2)
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Figure 1: Model for xz-plane in one cell of a periodic

FoDO lattice. The quadrupoles have equal lengths ηL; gap

lengths are d1 and d2. The cell starts at z = 0 with κ > 0
(focus). The yz-plane field map is the same but inverted.

Since the FoDO lattice cell (Fig. 1) has equal focus and de-

focus lengths, the fields have antisymmetry about each gap

center. For a matched beam, this yields a relationship be-

tween the envelopes a(z) and b(z) in the xz and yz planes,

respectively. One finds that

b(z) = a(2zc − z), (3)

where zc is the center of any gap. Therefore, we only need

to analyze a(z) in what follows.

DEFINITIONS
We define the gap asymmetry parameter

μ ≡ d2 − d1

2d
, (4)

where

d ≡ d2 + d1

2
= (1− η)L (5)

so that

d1 = d(1− μ), d2 = d(1 + μ). (6)
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The normalized gap lengths are

ν ≡ kd = k(1− η)L = 1−η
η ϕ, (7)

ν1 ≡ kd1 = ν(1− μ), (8)

ν2 ≡ kd2 = ν(1 + μ). (9)

The focusing strength parameter, used throughout this pa-

per, is defined by

ϕ ≡ ηkL. (10)

We introduce the following quantities that depend on this

parameter:

sn ≡ sin ϕ, cs ≡ cos ϕ,

sh ≡ sinhϕ, ch ≡ cosh ϕ. (11)

In the limit η→1, sn, cs, sh, and ch become identical with

the functions defined in Ref. [2].

MATCHED BEAM ENVELOPES
For a beam with emittance ∈, negligible space charge,

and arbitrary periodic focus function f(z), the xz-plane en-

velope function a(z) is determined by [5]:

a(z)′′ + f(z)a− ∈
2

a3
= 0 (12)

along with initial or periodic conditions for x and y. We

assume ∈x = ∈y = ∈. Without space charge, the beam

distribution may be KV or a class of physically realistic

distributions.

For a matched beam without space charge, it is unnec-

essary to solve the nonlinear equation (12) directly. In-

stead, we find the envelopes [6] using the phase-amplitude

method [1], [4], which yields the result

1
∈a2(z) =

M12(z)

P
√

1− ( 1
2TrM)2

, (13)

with
P(ϕ) ≡ sign(sin ϕ). (14)

The function P provides the correct sign for the radical for

any phase advance [2].

The matrix M is obtained by multiplying the transfer

matrices for the segments of a lattice cell. In the case of a

FoDO cell, these segments—taken in the order of Fig. 1—

have transfer matrices [1], [7]

MF =
(

cs 1
k sn

−k sn cs

)
, MO1

=
(

1 d1

0 1

)
,

MD =
(

ch 1
k sh

k sh ch

)
, MO2

=
(

1 d2

0 1

)
.

The matrix for the entire cell, starting at z = 0 in Fig. 1, is

M(0) = M(2L) = MO2
MDMO1

MF . (15)

The ranges of z for the four individual segments are indi-

cated in Fig. 1, namely, ηL, d1, ηL, and d2. If z �= 0 but,

for example, z lies within the first segment, then ηL and

MF split into ranges z and ηL− z as seen in Eq. (20).

Stability and Phase Advance σ
A single-particle orbit is stable if 2 cos σ = |TrM| < 2

[1]. We calculate the trace from M(0) = MIIIMF where

MIII ≡MO2
MDMO1

=

⎛
⎝ A1

2B+sh
k

k sh A2

⎞
⎠, (16)

A1 ≡ ch + ν2 sh, A2 ≡ ch + ν1 sh, (17)

B ≡ ν ch +
1− μ2

2
ν2sh. (18)

Then

cos σ =
M11 + M22

2
= (ch + ν sh)cs−B sn (19)

gives the phase advance, which agrees with the result given

by Lund and Bukh [3]. The envelope solution will be stable

for all values of ϕ for which the right-hand side of Eq. (19)

lies within the range [−1, 1]. Such regions of ϕ or kL are

referred to as pass bands. Reference [2] shows how these

bands are related to the branches of cos σ.
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Figure 2: (a) Phase advance from Eq. (19) for the first two

stable bands. (b) Band 2 with the kL axis magnified.

Exact Matched Beam Envelopes
For an arbitrary point z in the first (focus) segment, the

transfer matrix is obtained from MIII after pre- and post-

multiplying by the two subunits of MF referred to above.

Mf(z) =

(
cos kz 1

k sin kz

−k sin kz cos kz

)
MIII ×

(
cos k(ηL−z) 1

k sin k(ηL−z)
−k sin k(ηL−z) cos k(ηL−z)

)
. (20)

The superscript “f” means that z is restricted here to the

focusing segment. We define F (ϕ, z) ≡ kMf
12 and find,

with Eqs. (13) and (19), the exact focus-segment envelope:

a2(ϕ, z) = ∈ηL
F (ϕ, z)

Pϕ
√

1− ( 1
2TrM)2

(21)

F (ϕ, z) = (ch + ν sh)sn + μν sh sin[ϕ(1−2z/ηL)]
+ B cs + (B + sh) cos[ϕ(1−2z/ηL)]. (22)

There is no space here to present the exact solutions for all

four segments—see Ref. [6]. Instead, we show the result

for a complete cell graphically in Figs. 3 and 4. The lattice
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Figure 3: Envelope anorm ≡ a(z)/
√∈L from Eq. (21) and

Ref. [6]. Focus parameter kL = 0.60565π gives σ = 80◦.
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Figure 4: Same as Fig. 3 but with focus parameter kL =
2.41027π; σ = 270◦, the middle of the second pass band.

parameters are η = 0.5, μ = 0.8, with phase advances σ =
80◦ and σ = 270◦, respectively. Figure 3 uses the same

parameters as in a numerical example by Lund et al. [4].

Our first-band envelopes are very like theirs (which include

some space charge), but somewhat more compressed.

In the figures, a(z) was obtained from our exact results,

while b(z) simply used Eq. (3). The origin has been shifted

from that in Fig. 1. It is placed at the center of the second

drift space in order to display the matched-beam symmetry

described earlier.

OtherTopics:Peak Excursion, Beam Compression
The peak value of the envelope determines whether the

beam can pass through a given channel. There is an opti-

mum value of the focus strength for each pass band, as seen

in Fig. 5.
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Figure 5: Peak envelope values taken from Ref. [6]. Same

η and μ as in Figs. 2, 3, and 4. (a) First two stable bands.

(b) Second band magnified.

Beam compression in even bands is due to envelope min-

ima in the xz and yz planes occurring at or near the same

z. Ref. [2] shows that the effect becomes extreme near the

outer band edge (but it notes that caveats apply). The ef-

fect is even larger when there are drift spaces because the

focusing strength must be increased. For η = 0.5, μ = 0.0,

and σ = 356.75, the area compression ratio is 1.17× 106.

However, if the asymmetry parameter μ is finite, the xz and

yz compression points become separated and, for μ = 0.8
(Fig. 6), the area compression ratio is only 7× 104.
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Figure 6: Normalized a(z), b(z), and An(z) ≡ πab near

outer edge of band 2: kL = 2.41361π; σ = 356.6◦. The

beam compression (7 × 104) is reduced because the gaps

have unequal length and the a(z) and b(z) minima do not

coincide—see text.
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