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Abstract

We review recent progress in the following areas of
the impedance theory: calculation of impedance of ta-
pers and small angle collimators; optical approximation
and parabolic equation for the high-frequency impedance;
impedance due to resistive inserts in a perfectly conducting
pipe.

INTRODUCTION

A remarkable progress over the last decade in develop-
ment of computer codes significantly advanced our capa-
bilities in calculation of wakefields and impedances for ac-
celerators. There are however a number of practical prob-
lems that, when approached numerically, require a huge
mesh, and hence memory, or an extraordinary CPU power,
or both. One class of such problems is related to wakes
of ultra short bunches, typical for many next generation
electron/positron accelerators and photon sources. Another
class is represented by long tapered transitions, often with
non-round cross sections.

The numerical difficulties associated with these prob-
lems can be traced to a small parameter in the system, such
as, e.g., a ratio of the bunch length to the length of a taper. It
is remarkable, however, that the same small parameter can
often be used to develop approximate analytical methods
that provide a simplified solution to the impedance prob-
lem.

In this paper, we review recent results in the analytical
theory of wakefields, which include long tapered transi-
tions, calculation of the wakes for very short bunches, and
some special cases of the resistive wall impedance.

TRANSVERSE IMPEDANCE OF
TAPERED TRANSITIONS

Computer simulations of tapers are not always easy to
carry out, especially in cases when the taper cross section is
strongly elongated in the horizontal direction. Several an-
alytical approaches has been developed in the past to treat
gradual tapers.

Yokoya derived both the longitudinal and transverse
impedances of a smooth axisymmetric transition in the
low-frequency approximation [1]. His result for the trans-
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verse impedance is given by the following equation

Z⊥ = − iZ0

2π

∫
dz

(
a′

a

)2

, (1)

where Z0 = 4π/c = 377 Ohm, a = a(z) is the radius of
the pipe, and the prime denotes derivative with respect to
the axial coordinate z. Applying this formula to a conical
transition with the conical angle θ that connects two pipes
of radii a1 and a2 (a2 > a1) gives the following result:

Z⊥ = − iZ0

πaav

ε tan θ

1 − ε2
, (2)

where aav = (a1 + a2)/2 and ε = (a2 − a1)/(a2 + a1).
The result (2) should be considered as a first approxima-
tion in the small parameter θ, and one can raise a ques-
tion if (2) can be improved by adding higher order terms in
the angle θ [2]. Such terms can be systematically derived
for a smooth taper—they involve higher order derivatives
of a with respect to z. Unfortunately, these terms diverge
for a conical collimator for which a ′′ is proportional to the
delta functions located at the transition points between the
straight pipes and the conical taper.

By way of ingenious summation of diverging terms in an
infinite sum of a perturbation theory Podobedov and Krin-
sky [2] found a leading order correction to (2),

Z⊥ = − iZ0

πaav

ε tan θ

1 − ε2

(
1 − 0.18

ε
tan θ

)
, (3)

which was also confirmed by numerical simulations. Us-
ing several fitting parameters, they also found interpolation
formulas for the impedance of the taper that provide an ex-
cellent approximation for 0 < θ < π/2 and 0 < ε < 1.

The original Yokoya derivation was simplified and ex-
tended to the case of rectangular geometry in Refs. [3–5],
see Fig.1a. It was also found in Ref. [4] that, in the limit

Figure 1: Smooth tapers with rectangular (a) and elliptic
(b) cross sections.
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of small frequencies, the impedance of a rectangular tran-
sition increases linearly with the width of the taper when
the ratio of the width of the transition to the gap becomes
large. The dipolar component of the vertical impedance for
a taper with rectangular cross section, was found to be [5]

Z⊥y = − i

4
wZ0

∫
dz

(g′)2

g3
, (4)

where w is the (constant) width in the x direction and g =
g(z) is the (varying) gap of the taper in the y direction.
A comparison of (1) and (4) shows that impedance of a
rectangular transition is roughly w/g times larger than that
of a round one with the same length l.

Podobedov and Krinsky [6] calculated the impedance of
a taper with confocal elliptical cross sections (see Fig.1b)
and confirmed a similar scaling for the vertical dipolar
impedance with the width of the ellipse, in the limit of large
aspect ratios. More precisely, they obtained for the vertical
dipolar impedance

Z⊥y = − iπ

16
Z0

∫
dz

(ρ′)2

ρ3
, (5)

where ρ(z) = tanh−1[b(z)/a(z)] with a and b the major
(horizontal) and minor (vertical) semiaxes of the elliptical
cross section, respectively. In the limit of large aspect ratio,
a � b, it follows from this formula that Z⊥y ∝ a.

There is an important question of what are conditions
of applicability of the results presented above. There are
two such conditions—one is geometric, and the other one
is related to the requirement of a small frequency ω. The
geometric condition for the round geometry is a � l, or a
small angle taper, θ ∼ a/l � 1. For a large aspect ratio
rectangular transition the requirement is g � w � l, as
was pointed out in [6], and similarly b � a � l for the el-
liptic case. The regime g � l � w for which the width of
the collimator is wider than its length, has been addressed
by Krinsky [7] in the limit when the relative change in the
vertical gap through the transition is small, Δg/g � 1. The
results of that paper indicate that the vertical impedance as
a function of width w saturates at w ∼ l and does not in-
crease with the width when w becomes larger than l.

As was mentioned above, the results are valid at low fre-
quencies or, equivalently, for long bunches. To evaluate the
effect of bunch length on the impedance in a simple unify-
ing manner it is useful to consider a kick factor due to the
transition. The kick factor κy (in the vertical direction) is
defined by

κy =
E

eQ

〈θy〉
〈y〉 , (6)

where Q and E are the bunch charge and energy, respec-
tively, 〈y〉 is the averaged offset of the beam in the taper,
and 〈θy〉 is the averaged over the beam the kick angle due
to the impedance. For a purely inductive impedance (rep-
resented by Eqs. (1)-(5)) and a Gaussian bunch, the kick

factor is given by

κy = − c

2
√

πσz
ImZ⊥y , (7)

and it scales inversely proportionally to the rms bunch
length σz . For shorter bunches, the impedance is not purely
inductive, and the scaling of the kick factor with the bunch
length deviates from κy ∝ σ−1

z .
For the round geometry, the frequency range where one

can use Eq. (1) is well known and is given by ka2 � l,
where k = ω/c and a is understood as a characteristic
value of the radius. In the opposite limit of high frequecies,
ka2 � l, the kick factor does not depend on the bunch
length.

For large aspect ratio collimators the situation is more
complicated. Theoretical analysis in Refs. [8, 9] showed
that the inductive regime transitions at kw2/l ∼ 1 to an

intermediate one with the scaling κy ∼ σ
−1/2
z , which then

transitions at kg2/l ∼ 1 to a high frequency regime where
κy does not depend on σz .

Numerical simulation of Ref. [6] indeed revealed the in-
termediate regime. Based on numerical simulations how-
ever, Podobedov and Krinsky conjectured that the transi-
tion to this regime actually occurs at k ∼ 1/w. It is au-
thor’s belief that the issue is still open and requires addi-
tional studies.

OPTICAL APPROXIMATION IN
IMPEDANCE THEORY

Calculation of impedance for extremely short bunches
such as those envisioned for the International Linear Col-
lider [10] with the nominal bunch length of σz = 300 mi-
crons, or in the Linac Coherent Light Source where the
bunch length can be as short as a few microns [11], in-
troduces new possibilities to the theory. The frequency
spectrum of the bunch is characterized by k ∼ σ−1

z

and the small parameter for the problem is (kb)−1 with
b the characteristic geometrical size of an object in the
vacuum pipe that generates the impedance. It has long
been known that effective utilization of this small param-
eter may lead to simplification of the impedance problem,
and several analytical results are available in the litera-
ture for the impedance at high-frequencies. They include
the impedance of a step transition [12, 13] and the diffrac-
tion model for the impedance of a cylindrical pillbox cav-
ity [14, 15].

A general method which allows one to calculate the
impedance in the limit of very high frequencies was re-
cently developed in Refs. [16, 17] under the name of the
optical approximation (or optical regime) in the theory of
impedance. In this approximation it is assumed that the
electromagnetic fields carried by a short bunch propagate
along straight lines equivalent to rays in the geometric op-
tics. A protrusion or an obstacle inside the beam pipe can
intercept the rays and reflect them away from their origi-
nal direction. The energy in the reflected rays is associated
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with the energy radiated by the beam, which can then be
related to the impedance. Note that this kind of argument
has been used in the past in the case of step-in and step-
out transitions in a round pipe, where the impedance was
related to the energy “clipped away” from the beam by the
step [18–20].

If l is the length of an obstacle and b is the minimal cross-
section size of the beam pipe, the conditions for the optical
approximation are

1 � kb , l � kb2 . (8)

The first of these two conditions requires the size of the
obstacle be much larger than the reduced wavelength of
the radiation. The right hand side of the second inequal-
ity has a meaning of the length over which diffraction ef-
fects become significant, and this relation guarantees that
such effects give only a small correction to those of geo-
metric optics. Note that even a small-angle taper of angle
θ ∼ b/l can be described in the optical approximation for
short enough bunches, if σz/b � θ. The quantity kb2 can
also be interpreted as a catch-up distance over which radia-
tion, generated by the head of a beam at the lateral surface
at distance b from the beam orbit reaches the beam tail at
distance σz behind the head. Thus the second condition of
Eq. (8) for the applicability of the optical approximation is
that the object is short compared to the catch-up distance.

The result of Refs. [16, 17] can be formulated as fol-
lows. Consider a transition from a cylindrical pipe of a
given cross section SA to a pipe of cross section SB with
Sap being the minimal cross-section of the transition. An
example of such three-dimensional transition is shown in
Fig. 2. Let us denote r1 = (x1, y1) the two-dimensional

S ap

S B

S A

Figure 2: Cutout of the transition from a round to rectangu-
lar pipe. The arrow shows the direction in which the beam
travels. The shapes on the right side show cross sections of
the incoming, SA, and outgoing, SB , pipes, as well as the
minimal cross section for the transition Sap.

position of the leading point charge q1 and r2 = (x2, y2)
the two-dimensional position of the trailing point charge,
at distance s behind. The longitudinal wake w‖(r1, r2, s)
is then defined by

w‖(r1, r2, s) = − c

q1

∫ ∞

−∞
dtE1,z(r2, z = ct − s, t) ,

where E1,z is the longitudinal component of the electric
field generated by the first charge at the position of the sec-
ond one.

The optical approximation for the wake gives a purely
resistive wake field proportional to the delta function:

w‖(r1, r2, s) =
1
2π

δ(s)I(r1, r2) , (9)

with the corresponding longitudinal impedance

Z‖(r1, r2) =
1

2πc
I(r1, r2) . (10)

Note that the longitudinal impedance in this case does not
depend on the frequency. The factor I in the above equa-
tions is

I =
∫

SB

∇φ1,B(r) · ∇φ2,B(r) dS−

−
∫

Sap

∇φ1,A(r) · ∇φ2,B(r) dS , (11)

with ∇ = x̂ ∂/∂x + ŷ ∂/∂y. The integration goes over
the cross section of the outgoing pipe SB and the minimal
cross section Sap, indicated as subscripts. The potential
φ satisfies Poisson’s equation with a delta function on the
right hand side:

∇2φ1,B(r) = −4πδ(r − r1) ,

∇2φ2,B(r) = −4πδ(r − r2) , (12)

with the boundary conditions φ1,B = φ2,B = 0 on the wall
of pipe B (similar equations hold for φ1,A).

Knowledge of the longitudinal impedance (10) al-
lows one to compute the transverse impedance using the
Panofsky-Wenzel theorem

Z⊥ =
c

ω
∇r2Z‖ .

Many examples of the calculation of the impedance in op-
tical approximation, including geometries shown in Fig. 3,
can be found in Ref. [17], as well as comparison with nu-
merical simulations and the discussion of the accuracy of
the model. A practical application of the optical theory
for calculation of the wake due to coupler asymmetry in
Tesla-type accelerator cavities for the ILC can be found in
Ref. [21].

PARABOLIC EQUATION FOR
ELECTROMAGNETIC FIELD

Diffraction phenomena lie beyond the limits of the opti-
cal approximation. They, however, can be accounted for in
a simplified treatment based on a so called parabolic equa-
tion (PE) [22]. The parabolic equation in the diffraction
theory was proposed many years ago [23] and has been
widely used since that time. It is also a standard approx-
imation in the FEL theory [24]. More recently, the paraxial
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Figure 3: Examples of transitions solvable with the optical
approximation.

approximation was applied to the beam radiation problems
in a toroidal waveguide [25, 26] and in free space [27].

Applicability of PE in the high-frequency limit of the
impedance is based on the observation that in this case the
main contribution to the impedance comes from the elec-
tromagnetic waves that catch up with the beam far from the
obstacle and propagate at small-angles to the axis of the
pipe. This allows one to simplify Maxwell’s equations us-
ing the paraxial approximation. The resulting PE in many
cases is easier to solve than the original wave equations for
the fields. Note that the parabolic equation does not require
the second of the conditions in Eq. (8) to be satisfied, and
can be applied to long tapers at high frequencies.

PE is formulated for the transverse (with respect to the
direction of motion of the beam) component of the elec-
tric field Ê⊥ where the hat denotes a Fourier transformed
quantity,

Ê(x, y, z, ω) =
∫

dω eiωt−ikz E(x, y, z, t).

The transverse component of the electric field Ê⊥ is a two-
dimensional vector Ê⊥ = (Êx, Êy). The PE reads

∂

∂z
Ê⊥ =

i

2k

(
∇2

⊥Ê⊥ − 4π

c
∇⊥ ĵz

)
, (13)

where ∇⊥ = (∂/∂x, ∂/∂y) and ĵz is the Fourier trans-
formed projection of the beam current in the direction z.
The longitudinal electric field can be expressed through the
transverse one and the current

Êz =
i

k

(
div Ê⊥ − 4π

c
ĵz

)
. (14)

One of the most important advantages of PE is that it elim-
inates the small wavelength 2π/k from the problem. In-
deed, a simple scaling analysis of (13) shows that the longi-
tudinal scale l in that equation is of the order of ka2, where

a is the transverse size of the problem. As a result, the
numerical solution of PE requires coarser spatial meshes.

As in illustration, we show in Fig. 4 the longitudinal
impedance of a round tapered collimator calculated with
PE up to the frequency of about 4 THz. The collima-
tor has two tapered transitions of length 30 mm from ra-
dius of 5 mm to radius of 2.5 mm. It also has a cen-
tral part (2.5 mm radius) of length of 30 mm. The re-
sult is compared with simulation with the computer code
ECHO [28], and shows an excellent agreement. Note that
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Figure 4: Real (red) and imaginary (blue) parts of the
impedance. Dots are calculated with PE, solid lines are
the result of the computer code ECHO.

the real part of the impedance at large frequencies ap-
proaches the value of about 90 Ohm, which is close to what
is expected from the optical approximation for such colli-
mator, ReZ = (Z0/π) ln(amax/amin) = 83 Ohm.

IMPEDANCE OF RESISTIVE WALL
INSERTS

Resistive wall impedance is one of the oldest subjects
of the impedance theory [29]. Usually, however, this

Figure 5: Cylindrical insert of higher resistivity in a round
pipe.

impedance is calculated for an infinitely long pipe. There
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are situations in practice, when a pipe with a high wall con-
ductivity has a short resistive insert of length Li as shown
in Fig. 5. Recent papers [30–32] address this problem.

We remind the reader that the resistive wall impedance
per unit length of a long pipe is given by the following for-
mula [29]

Z‖
Li

=
cZ0

4π

1 − i

ca

√
ω

2πσ

[
1 − aω

4c
(1 + i)

√
ω

2πσ

]−1

.

(15)

In the limit of low frequencies, ks0 � 1, where k = ω/c
and s0 = (2a2/Z0σ)1/3 (σ is the wall conductivity, a is the
pipe radius), one has

Z‖
Li

=
cZ0

4π

1 − i

ca

√
ω

2πσ
. (16)

In the opposite limit, ks0 � 1, the impedance per unit
length does not depend on conductivity and is Z ‖/Li =
(cZ0/4π)(4i/a2ω).

A naive approach to the case of an insert would be to
multiply the impedance per unit length of an infinite pipe
by the length of the insert Li. This indeed turns out to be
true in the limit of low frequencies, ks0 � 1, as was shown
in [31].

At high frequencies, when ks0 � 1, the detailed anal-
ysis of Ref. [30] reveals several regimes. The authors
show that one can use (15) for the impedance of long in-
serts, when Li � ka2. In an intermediate regime when
a2/s3

0k
2 � Li � ka2 (note that the left hand side of this

inequality is indeed much smaller than the right hand side
because of assumed ks0 � 1) the impedance does not de-
pend on conductivity and is equal to twice the diffraction
impedance of a pill-box cavity of length L i [29]

Z‖ =
Z0(1 − i)

πa

√
cLi

πω
. (17)

Finally, for very short inserts, a2/s3
0k

2 � Li, the
impedance is again given by Eq. (16) multiplied by the
length of the insert.

CONCLUSION

We reviewed recent analytical results in the theory of
beam impedance in accelerators. They include: a low fre-
quency approximations for long tapers of various cross sec-
tions; optical approximation that allows to compute geo-
metric impedance of short bunches generated by protru-
sions into the vacuum chamber; the parabolic equation for
simplified description of the electromagnetic field at high
frequencies; and, finally, resistive wall impedance of short
inserts.

The author thanks B. Podobedov for critical remarks.
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