A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Hall, B.D.S.

Paper Title Page
TU5PFP040 Novel Geometries for the LHC Crab Cavity 909
 
  • B.D.S. Hall, G. Burt
    Cockcroft Institute, Lancaster University, Lancaster
  • R. Calaga
    BNL, Upton, Long Island, New York
  • J.R. Delayen, R.A. Rimmer, H. Wang
    JLAB, Newport News, Virginia
  • J.D.A. Smith
    Lancaster University, Lancaster
 
 

In 2017 the LHC is envisioned to increase is luminosity via an upgrade. This upgrade is likely to require a large crossing angle hence a crab cavity is required to align the bunches prior to collision. There are two possible schemes for crab cavity implementation, global and local. In a global crab cavity the crab cavity is far from the IP and the bunch rotates back and forward as it traverses around the accelerator in a closed orbit. For this scheme a two cell elliptical squashed cavity at 800 MHz is preferred. To avoid any potential beam instabilities all the modes of the cavities must be damped strongly, however crab cavities have lower order and same order modes in addition to the usual higher order modes and hence a novel damping scheme must be used to provide sufficient damping of these modes. In the local scheme two crab cavities are placed at each side of the IP two start and stop rotation of the bunches. This would require crab cavities much smaller transversely than in the global scheme but the frequency cannot be increased any higher due to the long bunch length of the LHC beam. This will require a novel compact crab cavity design.

 
WE5PFP049 Phase Control Testing of Two Superconducting Crab Cavities in a Vertical Cryostat 2110
 
  • P. Goudket, S.C. Appleton, R. Bate, C.D. Beard, B.D. Fell, J.-L. Fernandez-Hernando, P.A. McIntosh, S.M. Pattalwar
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P.K. Ambattu, G. Burt, A.C. Dexter, B.D.S. Hall, M.I. Tahir
    Cockcroft Institute, Lancaster University, Lancaster
 
 

The ILC crab cavities require very tight phase control in order to operate within the ILC parameters. In order to verify that the phase control system met the design tolerances, two single-cell niobium 3.9GHz superconducting dipole-mode cavities were tested in a liquid helium cryostat. The preparation of the cavities, design of the testing apparatus and performance of the phase control system are described in this paper.