

PXIE RFQ BEAD PULL MEASUREMENTS*

TUPP047

P. Berrutti, T. N. Khabiboulline, V. Poloubotko, G. Romanov, J. Steimel, V. Yakovlev, Fermilab, Batavia, IL 60510, USA, D. Li, J. Staples, Lawrence Berkeley Lab, Berkeley, CA 94720

Introduction

- **PXIE** is a CW injector experiment of the new multi MW linac to be built at Fermilab.
- **‡** The project is composed of a H- ion source, LEBT section, RFQ, MEBT and two cryomodules of superconducting cavities for a final beam energy of 30 MeV.
- **‡** All the components will operate in CW

Control and data acquisition

- **‡** All the motors and the load cell are controlled using LabVIEW[®]; in addition it provides real time data acquisition from the network analyzer (NWA).
- **☆** The motors the load and cell communicate with the computer via USB/RS485 serial interface, while the NWA is controlled via GPIB protocol.

Electric axis results

Given the field distribution phase vs offset curve has max in the center.

regime having 100% duty cycle.

Input energy [keV]	30.00	
Output energy[MeV]	2.10	
Frequency [MHz]	162.50	
Vane-vane voltage [kV]	60.00	
Vane Length [cm]	444.60	
RF Power [kW]	100.00	
Beam Power [kW]	10.50	
Duty factor	100%	

The table reports RFQ parameters, the 3D model is shown below.

The RFQ is being built at LBNL and is the product of collaboration between FNAL and LBNL, the bead pull measurements reported were taken on the dry fit of a single RFQ module before brazing.

Having different buses allows parallel communication with all the instruments. **‡** In addition the program allows data processing, and includes a correction for sag error of the bead along the phishing line.

3D model of the bead pull system: motors and mechanical supports.

in the second se				1
	121110	And Designed in the		

alignment.

	Visual	align.	Electric align.		
Diagonal offset	Plate1	Plate2	Plate1	Plate2	
45 deg. [mm]	-0.52	-1.1	0.13	-0.07	
-45 deg. [mm]	0.84	0.1	0.16	-0.03	

Quadrants field amplitude **Carter** Quadrant field flatness **(FF)** gives information about the frequency along the RFQ length and the symmetry between quadrants.

Data taken at R= 30 mm, bead diameter= *

Bead pull set up

- **A common measurement set up for RFQ** bead pull uses 4 lines, a separate line for each quadrant
- **The set up used for the measurements of** PXIE RFQ module consists of one line capable of moving into any quadrant.

Characteristics Reduction of number of lines necessary.

PXIE RFQ module 2 (out of 4 total) bead pull measurement set up at LBNL.

- **Electric axis measurements**
- **‡** In order to measure the field amplitude of each quadrant, it is preferable to refer all the diagonal offsets with respect to the electric center.
- **After a first, visual alignment, three string** scans were performed, moving from -5 mm to 5 mm at ±45 degrees, while the **NWA recorded the phase shift.**
- **The first scan with bead outside the** structure

9.5 mm after visual alignment: FF 93%.

Data taken at R= 30 mm, bead diameter= 4 mm, after electric alignment: FF 94.6%.

Electric field on axis

☆ A bead having diameter 4 mm allows measurements up mm offset to 1

- **Possibility to run diagonal string scans. Possibility of taking measurements near** and on RFQ axis, if bead diameter small enough.
- **Two** support plates, both with independent horizontal and vertical positioning systems moved by stepper motor with an anti-backlash screw.
- **The bead line is moved by a stepper** motor on the entrance plate.
- **The tension on the line is monitored by a** load cell to allow sag correction.
- **A NWA reads the phase shift due to the** bead\string motion in the RF volume.

- **The second and third positioning the** bead just inside the two matchers plate.
 - **Carter Electric** field distribution at the -30.6 --34.4 center of the RFQ, X–Y section.

*under Contract No. DE-AC02-07CH11359