PROGRESS ON ESS MEDIUM ENERGY BEAM TRANSPORT

I. Bustinduy*, J.L. Muñoz, D. Fernandez, O. González, S. Varnasseri, A. Ghiglino, R. Vivanco,

F. Sordo, M. Magan, P. Gonzalez, N. Garmendia, L. Muguira, Z. Izaola,

I. Madariaga, I. Rueda, ESS-Bilbao, Spain.

A. Ponton, R. Miyamoto, M. Eshraqui, ESS, Sweden

				WS FC III III				
			BSM		GRI	, D		
-20 VALVE	SLIT		NPM		NPM		I FCT	
_25								
20	500	1000	1500	2000	、2500	3000	3500	
PARAMETERS			Longit	udinal position (mm	1)			
Parameter		Values	The considered ver	rsatile MEBT is being	designed to achieve	four main goals:		
Input Energy $3.62 \text{ MeV} \ (\beta = 0.0876)$			1 Match the RFQ output beam characteristics to the DTL input both transversally and longitudinally.					
Total Current	62.5 mA		2 Contain a fast chopper and its correspondent beam dump, that could serve in the commissioning as					
Particle	protons (H ⁺)		well as in the ramp up phases.					
Number de quadrupoles		11	3 Serve as a halo scraping section by means of various adjustable blades.					
Max quadrupole gradients		33 T/m	4 Measure the beam phase and profile between the RFQ and the DTL, along with other beam monitors.					
Number of <i>buncher</i> cavities	ber of <i>buncher</i> cavities 3			A set of eleven quadrupoles is used to match the beam characteristics transversally, combined with three				
Frequency		352.2 MHz	352.2 MHz buncher cavities, which are used to adjust the beam in order to fulfill the required longitudinal					
Effective Voltage (EoTL)	12	125-62-146 kV parameters.						

BUNCHER

Left: Picture of the SS buncher prototype after machining. **Right:** 3D metrology corresponding to Body part of the machined AI buncher cavity. Colorbar scale represents measured deviation respect to drawings values (mm).

Length of each sector is determined by distance between bunches. ~ Bc/f. In our case, $length \leq 74.31mm$.

BEAM-DUMP

The required *kicker* should be able to deflect a 20μ s fraction of the beam for a 14 Hz repetition rate for a 10 ns rise time. In a worst case scenario, machine protection system also expects a 1 ms train of bunches to be deflected against the beam dump.

Left: Steerer Coils In (SCI). Right: Steerer Coils Out (SCO). Coils are represented in Copper color. The fiducial points must be designed with enough space to hold one sphere support at a time at the magnet top sector.

Following specifications:

 \emptyset 41 mm aperture, $\int B = 2.5 T$ with 100 mm maximum physical size (length) and ~ 15 G.m deflection for the steerers.

BEAM DYNAMICS

In order to improve MEBT performance, a systematic approach was conducted to seek best input beam. 2 different sets of potential RFQ outputs were used as input of the ESS warm linac. MEBT elements were used to match the beam to the required DTL periodic solution, and different beam parameters were evaluated at the end of the warm linac section.

Lower values of a are desirable as input for this lattice

Left: Generated inputs from RFQ. Right: Output parameters at the end of ESS warm linac.

The authors strongly thank A. Aleksandrov, M. Ikegami, F. Caspers, S. Ramberger, A. Letchford, M. Clarke-Gayther, J. Stovall, C. Oliver and I. Podadera for their very helpful comments.