

PKU 2.45GHz MICROWAVE DRIVEN H- ION SOURCE PERFORMANCE STUDY*

State Key Laboratory of Nuclear Physics and Technology

T. Zhang¹, S. X. Peng^{#1}, H. T. Ren¹, Y. Xu¹, A. L. Zhang², J. F. Zhang¹ J. Zhao¹, Z. Y. Guo¹, J. E. Chen¹ ¹State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, Beijing 100871, China

²School of Physics, University of Chinese Academy Sciences, Beijing 100049, China

Abstract In a high intensity volume-produced H⁻ ion source, H⁻ ion production processes are great affected by electron temperature and gas pressure distribution within the discharge chamber. The H⁻/e ratio within an extracted H- ion beam is much depended on the electron absorption within the extraction system. At Peking University (PKU), lots of experiments were carried out for better understanding H⁻ processes and electron dump on our 2.45 GHz microwave driven Cs-free permanent magnet volume-produced H⁻ source. Detail will be presented.

EXPERIMENT SETUP

Principle volume of H-source:

 $e(fast) + H_2 \rightarrow H_2^* + e + h\upsilon$ e(slow) + $H_2^* \rightarrow H + H^-$

e-dump field: 30 Gs, 40 Gs, 55 Gs
The operation pressure: 1.5×10-3 Pa ~ 8.0×10-3 Pa
Extracted voltage: 50 kV
Pulsed RF power:2800W(1ms/100Hz)

EXPERIMENTAL RESULTS OF H- ION SOURCE

Enhancing microwave power could improve the production of fast electron, the microwave power was set at 2800W.

H⁻ ion source: ◆The ECR region

♦H⁻ formation region

Filter region

Figure 2: H- current VS operation pressure

Enhancing pressure could increase the

collision possibility of fast electron with H₂.

◆Increasing pressure would enhance the

possibility of H atoms and molecules

H- beam current.

destroy H-.

Figure 3: Total beam current of source VS operation pressure

Exist an optimum operation pressure for From fig.3 and fig.4:

◆Increasing the intensity of e-dump field could reduce total beam current and increase H-/e ratio.

♦So, increasing the intensity of e-dump field in an appropriate range could dump electron from the extracted beam. Figure 4: H-/e ratio VS operation pressure

Pressure(10^-3Pa

ratio

Dipole magnet and the outer magnet could dump the electron on the collar.
Decrease possibility of arcing and slow down water cooling problem.

55Gs e-dump field

40Gs e-dump field

SUMMARY

The significant influence of operation pressure and electron dump field had been found: There exists an optimum operation pressure for H- beam current by balancing the production of H- and keeping it from being destroyed.

Increasing the intensity of e-dump field could dump electron from the extracted beam on the collar.

Performance of PKU H⁻ source was improved significantly. The negative ion source is working in pulsed/CW mode without caesium (Cs). A 14.7 mA pure H⁻ ion beam was produced by this developing source.

Parameter	Experimental value
Operation pressure	2.8×10-3 Pa
strength of e-dump field	55 Gs
Microwave power	2800 W
Extraction voltage	50 kV
H- beam current	14.7 mA

Table 1: Experimental condition of highest H- current