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Abstract 
The dynamics of a charged particle beam is studed in 

the frame of Vlasov theory  in the case of non-hollow 
nonuniform spatial distribution. The nonstationary model 
based on a beam behaviour description by means of 
kinetic function dependent on the integrals of the particle 
motion is presented. The cases of strong and weak 
nonlinearities are considered. The results of numerical and  
analitical calculations are discussed. 

INTRODUCTION 

For a lot of accelerator physics problems the 
investigation of a charged particle beam dynamics by 
means of the simple mathematical models is attractive 
tool because it allows to obtain the knowledge of the 
beam behaviour with most physical generality. Frequently 
these models are involved into programm packages which 
calculate the beam envelopes or particle trajectories. First 
such a model was proposed by I. M. Kapchinsky and V. 
V. Vladimirsky (KV-model) in 1959 [1]. This model 
allows to describe both the charge-dominated and 
emittance-dominated beams in the case of quasistationary 
beam propagation. KV-model gives a full kinetic beam 
description due to the assumption that the kinetic 
distribution function is a function of particle motion 
integral and hence automatically satisfies to Vlasov 
equation. Yarkovoy's model [2] may be considered as a 
development of KV-model. It allows to describe 
nonstationary 2D-beams without axial symmetry. 
Subsequent development of 2D- and 3D-models is 
presented, for instance, in papers [3-6]. All the models 
mentioned above describe the beam with linear own 
forces that corresponds to uniform charge density in a 
transverse beam cross-section in the case of continuous 
beam or in a bunch volume in the case of bunched beam. 
The models that take into account the nonuniform charge 
density were proposed, as example, in [7-11]. In papers 
[9-11] only self-similar beam oscillations are under 
consideration, in contrast to papers [7, 8], where the 
particle distributions are not stationary. 

The present paper studies a charged particle beam with 
parabolic current density profile. The aim is to predict a 
behavior of the beam envelope with time. The model is 
used which doesn't require the particle distribution to be 
stationary.  

MODEL DESCRIPTION AND 
NUMERICAL CALCULATIONS 

Let us consider, for example, a quasistationary 

relativistic intense electron beam, the own charge of the 
beam being neutralized. For the mathematical simplicity 
let us suppose the sheet geometry of the beam. Since as a 
rule the beam lifetime is significantly more than the time 
of transition processes in the beam one can describe the 
beam behaviour by means of a smooth function R(z), 
where R(z) – the beam tranverse size, z – longitudinal 
coordinate. In the case of the continuos beam with 
uniform charge density KV-invariant [1] may be written 
as: 

(1) 
 

Where x' is the derivative of x with respect to z, R' – the 
derivative of R with respect to z, 0  the beam rms 
emittance squared, x – the transverse coordinate. 
 

Let us consider the beam with the charge density 
distribution n(x,z), which falls down with x as parabola 
and reaches zero at the beam boundary. It is a good 
approximation for the density distribution of the real non-
hollow continuous beam: 

2
2zx, (z)xa(z)a=)n( 0 (2) 

 
Hence we obtain that the particle transverse motion is 

described by the equation 

 
3

1 (z)x+(z)x=x 3
'' .                   (3) 

Here (z)1 = k (z)a0 ,  
 

(z)3  = /3ka2(z)  , 2/mc4 2e=k

For equation (3) the integral I as analogue of KV-
invariant (1) may be constructed with the help of the next 
relation: 

0 0

2/1Iz,x,
=k =k
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k

k
k

' )I)x(z,b(±I)x(z,a=)(x                                                                       (4) 

Let us substitute (4) in (3) and neglect all summands 
with 5th power and higher. Then let us introduce a kinetic 
distribution function as:  

 I)(=f(I) 12n0 .  

2

2
02

R
x+)Rxx(R=I ''

THPP102 Proceedings of LINAC2014, Geneva, Switzerland

ISBN 978-3-95450-142-7

1090C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

04 Beam Dynamics, Extreme Beams, Sources and Beam Related Technologies

4A Beam Dynamics, Beam Simulations, Beam Transport



Here 0n the time-independent normalization constant, 
 – Heaviside function. The distribution function differed 

from Maxwellian may be used in our task because 
charged particle beam is not thermodynamically 
equilibrium system. So one can obtain for the beam 
charge density: 

|)| x) (x)(n = (n 222
00 / 2u1 -/u ,     (5) 

Where 

2/12
0

22
00 3/11/2 )u)u(++(u=R '' (6) 

 
Here function u is the solution of equation 
 

3
1 / u(z)+(z)u=u 0

'' .                         (7) 

 
The whole current conservation should be taken into 

account, so for dimensionless beam radius and rms 
emittance the next equation system may be obtained: 

22 /112 )(=)( ''

                             (8) 
 

3/1=+''

Here and  are dimensionless rms radius and 
emittance respectively, 

3/2
10 / )lu(l= 20

l= 0 , pc=l /1 ,

LevnJ=l 02/0

  
J  is the whole beam current,   L  -  the width of the 

beam,    p  is the plasma frequency, corresponding to 

the density value 0n ,   v  is the beam velocity. 

In (8) time-dependence of rms emittance was obtained 
in self-consistent manner, because function f(I)  
automatically satisfies to Vlasov equation, and relation (5) 
for the density, i.e. for zero moment of the distribution 
function, has a parabolic dependence from  x . 

 
From the system (8) one can find the stationary 

equilibrium state for the beam. This state corresponds to 
the values 1==  . 

If we consider the case of small deviation of the beam 
characteristics from equilibrium ones, the beam behavior 
may be described by means of equations 

 

(9)12p3q ='p', p='q'  

p, q – small deviations from equilirium values of 
dimensionless rms emittance and dimensionless envelope 
radius respectively.  

System (9) describes the small transverse oscillations 
corresponding to the case of the absence of rms emittance 
growth – the phase curve is finite. 

The beam radius that corresonds to equilibrium solution 
is

 
3/2

0/ )l(cl=R p0

 
and effective emittance value corresponding to the 
equilibrium is 

 
2
00 / l= . 

 
Here  is the normalization constant. 

 The results obtained are valid under condition  

|||| <'

The systems (8) and (9) are solved numerically by 
means of Runge-Kutta-Feldberg method of 4th order. The 
results are presented at Figures 1 and 2 that indicate the 
envelope oscillation build-up possibility. 

    

 
Figure 1: Dimensionless rms radius zn,1 vs dimensionless 
longitudinal coordinate zn,0 (case of significant deviation 
of the beam parameters from equilibrium ones) 

From Figures 1 and 2 it is evident that in the case of 
strong nonlinearity, i.e. in the case of significant deviation 
of the beam parameters from the equilibrium ones, the 
essential growth of rms emittance is observed.   
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Figure 2: Dimensionless rms radius zn,1 vs dimensionless 
longitudinal coordinate zn,0 (case of small deviation of 
the beam parameters from equilibrium ones). 

 

The self-consistent systems (8) and (9) describing the 
beam rms parameter oscillations correspond to 4th orde 
envelope equation. The coefficient near  of 1  radius derivative st

in both cases is not equal to zero unlike the case of 
envelope equation for the beam with uniform density. 
Systems (8) and (9) describe the situation when the 
current distribution is not stationary during the time of 
one particle flight, and oscillations inside the beam are not 
self-similar, so the model describes the most general case 
of the continuos  non-hollow  beam  behaviour  with  nonuniform  
charge density.

   

     

CONCLUSIONS 
Nonlinear dynamics of the charged particle  beam is 

studied. Transverse charge current nonuniformity is 
shown to lead to essentially nonlinear particle transverse 
oscillations. Depending on nonlinearity power the growth 
of effective emittance can be observed at a time 
corresponding to about a quarter of the plasma 
wavelength. The exact beam parameters exist 
corresponding to the case when the effective emittance 
and the beam transverse size do not grow. In the case of 
small deviation of the initial beam parameters from 
equilibrium ones the phase curves are finite, the effective 
emittance growth is absent. The results obtained are valid 
under the condition   pc>l /0 , i.e. when minimum 
system linear size is more than maximum beam plasma 
wavelength. 
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