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Abstract
Stationary self-consistent distributions for charged par-

ticle beam in magnetic field are considered. These distri-

butions can be regarded as formal solutions of the Vlasov

equation which is formulated in the covariant form.

COVARIANT FORM OF THE VLASOV
EQUATION

Dynamics of a charged particle beam can be described as

dynamics of all individual particles composing it. Another

model of the beam dynamics is the Vlasov equation which

is an integro-differential equation for density of the particle

distribution in the phase space.

Let us formulate the Vlasov equation in covariant form

following the works [1, 2]. Firstly, let us specify a reference

frame and introduce the phase spaceM as the tangent bundle

of the configuration space associated with given reference

frame [3, 4]. If particles always lie on the same surface S in
the phase space, or distribution density does not depend on

some coordinate, then the phase spaceM can be taken as

coresponding subspace of the initial phase space.

Define the particle distribution density in the phase space

(phase density) [1, 2] as such differential form n(t,q) of
degree p that for any open subdomain G ⊂ M

∫
D

n = NG . (1)

Here NG is a number of particles inG, t is the time, q ∈ M. If
particle lie in some open subdomain ofM, then p = dimM,
D = G. If all particles lie on some surface S in the phase
space, then p = dim S, D = S ∪ D. The latter case includes
as a particular case a set of point-like particles. In this case,

the phase density is a form of degree 0, i.e. a scalar function,
and integration over D is the summation over all particles

lying in G.
In all cases the Vlasov equation can be written in the

form [1, 2]

n(t + δt,Ff , δtq) = Ff , δtn(t,q). (2)

Here Ff , δtq denotes Lie dragging along vector field f [4],
which is defined by the dynamics equation dq/dt = f , and
depends on an external field and the self field.

Consider the case when particle distribution is described

by the form of maximal degree. Assume that its single com-

ponent ñ is continuously differentiable on phase coordinates.
Ho do this component change at some point q of the phase
space depending on the time t?
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Let the phase density at some instance t at a point q be
equal to n(t,q). At the instance t + δt in this point, it will be
equal to n(t+δt,q) = Ff δtn(t,Ff −δtq), as the phase density
change according to equation (2). Introduce the derivative

of a differential form on the parameter t as a form which

components are derivatives of corresponding components

on t. Then we obtain the Vlasov equation in the form

∂n
∂t
= lim

δt→0
n(t + δt,q) − n(t,q)

δt
= −L f n(t,q). (3)

Here L f n(t,q) denotes the Lie derivative of the phase den-
sity along the vector field f . Components of the Lie deriva-
tive of a differential form of degree p can be written in the
form

(L f T )i1 ...ip =
∂Ti1 ...ip

∂qk
f k +

∂ f j

∂qi1
· Tj i2 ...ip+ (4)

. . .
∂ f j

∂qip
· Ti1 ...ip−1 j (5)

(summation is meant on coincident indices).

LONGWISE UNIFORM BEAM
Consider stationary longitudinally uniform axially sym-

metric beam in a uniform longiduninal magnetic field [7-13].

Uniformity means that phase distribution does not depend

of longituninal coordinate z. Assume also that longitudi-
nal velocities vz of all particles are the same. Then we can

consider particle distribution in 4-dimensional phase space.

Axial symmetry means that the phase density and density in

the configuration space do not depend of azimuthal angle

ϕ. Then electric field potential U depends only on radial

coordinate r : U = U (r). In this case, particle dynamics
equations give the first integrals of motion M and H in the

form

M = r2(ϕ̇ + ω0) = const, (6)

H = ṙ2 + ω20r
2 + M2/r2 + 2εU (r) = const. (7)

Here ω0 = eBz/(2mγ), ε = e/(mγ3), e and m are charge

and mass of a particle, Bz is z−component of the magnetic
flux density, γ is the Lorentz factor.
Assume that function ω2

0
r2 + M2/r2 + 2εU (r) is strictly

convex. Then ϕ,M, and H define a particle trajectory. There-

fore ϕ,M, H, and the phase of the trajectory θ can be taken
as particle coordinates in the phase space. Additionally as-

sume that particles are evenly distributed on phases of a

trajectory. It means that trajectory segments corresponding

to equal time intervals contain equal number of particles.

This assumption provides the stationarity of the distribution.

As distribution is uniform on ϕ and θ, consider two-
dimensional supspace with coordinates M and H as the
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phase space. Call this space the space of integrals of motion.

Denote the single component of the phase density in these

coordinates by f (M,H). It is easy to understand that any
f (M,H) gives a solution of the Vlasov equation written in
the form (2). To find U (r) consider component of the phase
density in the initial phase space in coordinates ϕ, θ,M, H

nϕθMH = (4π)−1 f (M,H)/P(M,H), (8)

where P(M,H) is phase increment along half of a traejectory

P(M,H) =

rmax(M,H )∫
rmin(M,H )

(H − ω20r2 − M2/r2 − 2εU (r))1/2 dr.

(9)

Find density 
(r) in the configuration space. We have

nxyMH = nϕθMH · det
(
∂(ϕ,θ)
∂(x, y)

)
=

nϕθMH

r |ṙ | . (10)

Hence,


(r) =
1

2πr

∫
Ω(r )

P(M,H)−1 f (M,H) dM dH
(H − M2/r2 − ω2

0
r2 − 2εU (r))1/2

.

(11)

Here Ω(r) is the set of admissible values of M and H for

particles passing through point with coordinate r.
It can be shown that if the beam is radially confined, r ≤ R,

then Ω(r) is defined by the inequalities

M2

r2
+ω20r

2+2εU (r) ≤ H ≤ M2

R2
+ω20R2+2εU (R). (12)

Denote the set of all admissible values of M and H by ΩR .
It is defined by the inequalities

min
r

(ω20r
2 + M2/r2 + 2εU (r)) < H ≤ (13)

≤ M2/R2 + ω20R2 + 2εU (R). (14)

UNIFORMLY CHARGED BEAM
Let us find such phase distributions that particle density

in the configuration space is uniform inside the beam cross-

section 
xy (r) = 
0, r ≤ R. Then the Poisson equation
yields U (r) = −e
0r2/4ε0.
Firstly, consider the case when particle are distributed on

the two-dimensional surface M = 0, H = 0. As previously,
assume that the phase density does not depend of ϕ and θ.
Using the Vlasov equation in the form (3), we get

∂nϕθ
∂t
= −dϕ

dt
∂nϕθ
∂ϕ
− dθ

dt
∂nϕθ
∂θ
= 0. (15)

This solution corresponds to wide known Brillouin flow

[12], when particle rotates around beam axis with the same

angular velocity ϕ̇ = −ω0. As can be seen from (7), 
B =
2ε0ω

2
0
/(eε) = ε0Bzγ/(2m) is the spatial density of the

Brillouin flow. In what follows, it is assumed that 
0 < 
B .

Figure 1: The set ΩR for the uniform beam. Curve 1 rep-

resents the boundary H = M2/R2 + ω2R2. Straight line
segments 2 represent the boundary H = 2ω |M |.

If M and H can change, then inequalities (14) take the

form

2ω |M | < H ≤ M2/R2 + ω2R2, (16)

where ω2 = ω2
0
− e
0ε/(2ε0). Consider a distribution when

all particles are uniformly distributed on the straight line

segment Sk ,which is tangent to upper boundary of the set
ΩR :

Sk : H = k M + H0, H0 = R2(ω2 − k2/4), (17)

|k | < 2ω, (M,H) ∈ ΩR (segment A′B′ on Fig.1). In this
case, the particle density in the space of integrals of motion is

described by the differential form of degree 1 f0dM, f0 > 0.
In the initial phase space such density is described by the

form of degree 3 defined on a three dimensional surface

corresponding to segment Sk . Denote its components by
ni jk . Analogously to previous case, we get

nϕθM =
f0

4πP(M,H)
, nxyM =

nϕθM
r |ṙ | . (18)

Then spatial density does not depend of r :


0 = 2

M2∫
M1

nxyM dM =
ω f0
π
= const. (19)

Here M1,M2 are roots of the denominator in the integrand.

At k = 0 (segment AB on fig.1), this distribution repre-

sents wide knownKapchinsky-Vladimirsky distribution [13],

for which all particles are uniformly distributed on the seg-

ment AB (Fig.1).

All distribution corresponding to various k give uniformly
charged beam with the same radius R. Therefore any linear
combinations of these distributions or their integral on the

parameter k give the uniform charged beam with radius R.
As an example of nontrivial distribution gotten as integral,

give the distribution with the density

f (M,H) =
π
0

2ω2(M2 − H R2 + ω2R4)1/2
. (20)
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LONGWISE NONUNIFORM BEAM
Consider stationary azimuthally symmetric beam in lon-

gitudinal magnetic field in which all particles have the same

longitudinal velocity vz [7-14]. Let R and ω0 slow change

along beam axis: dω0/dz 	 ω0/R. Assume also that

the spatial density is uniform within each cross-section:


xy = 
0(z), r < R.
In this case, M is also integral of motion. To get another

integral, consider equation of radial motion

d2r
dt2
= −ω20r +

M2

r3
+ λ

r
R2

(21)

and equation for the beam envelope R(z)

d2R
dt2
= −ω20R +

λ

R
+

a2
0
c2
0

R3
, (22)

which holds under assumption that at initial instance patri-

cles lie inside the ellipse r2/a2
0
+ ṙ2/c2

0
= 1 in the phase

space of the transverse motion. Here λ = eJ/(2πε0mγ3vz ).
System of equations (21), (22) is similar to known Er-

makov system [15] and generalized Ermakov system [16,17],

but differs from them , because it contains terms with R−2
and R−1 in the first and in the second equations correspond-
ingly. Integral of this system is

I = (
dq
dτ

)2 +
M2

q2
+ a20c20q2. (23)

Here q = r/R, dτ = ds/R2. Denote the set of admissible val-
ues of M and I by Ω̃1. It is easy to see that Ω̃1 is determined
by inequalities

2a0c0 |M | < I ≤ M2 + a20c20 , (24)

and, therefore, looks like the set ΩR for radially confined

beam on Fig.1, where H should be replaced by I .
Consider a particle distribution of some thin layer moving

along beam axis. The phase space is four-dimensional, and

M, I, ϕ and θ can be taken as coordinates. As previously,
assume that particle uniformly distributed on phases θ and
azimuthal angle ϕ.
At first, consider a case when particles are distributed

on the two-dimensional surface M = 0, I = 0. Equation
(3) also yields equality (15). Therefore, such distribution is

stationary solution of the Vlasov equation. From physical

point of view, it correspond to a beam with radius changing

along beam axis according to equation (22), and rotating in

each cross-section with angular velocity that also depends

on z. Such distribution is analogue to the Brillouin flow, and
can be called the generalized Brillouin flow.

Consider also a distribution when all particles are uni-

formly distributed on the segment Sk , which is tangent to
upper boundary of the set Ω̃1 :

Sk : I = k M + I0, I0(k) = a20c20 − k2/4, (25)

|k | < 2a0c0, (M, I) ∈ Ω̃1 (segment A′B′ on Fig.1). De-
scribe the particle density in the space of the integrals of

motion by the differential form of the first degree f0dM,
f0 > 0. In the initial four-dimensional phase space such
density is described by the form of degree 3 defined on the

segment Sk . Analogously to the previous case, we get

nϕθM =
f0

4πP(M, I)
, nx̃ ỹM =

nϕθM
q |q̇ | , (26)

where x̃ = x/R, ỹ = y/R,

P(M, I) =

qmax(M, I )∫
qmin(M, I )

(I − M2

q2
− a20c20q2)1/2 dq =

π

2a0c0
.

(27)

For spatial density we get


x̃ ỹM =

M2∫
M1

nx̃ ỹM dM =
a0c0 f0
π

= const. (28)

When k = 0 (segment AB on Fig.1), we have analogue of the

Kapchinsky-Vladimirsky distribution for nonuniform beam.

It is easy to understand that taking a linear combination of

such distributions with various k we also get a solution of
the Vlasov equation.

Analogous approach can be also used for beam in extermal

electric field [2, 18].

Analytical solutions of the Vlasov equation described here

and others can be used as a beam models in optimization

problems [19-25] and as test problems for beam simulation

software.
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