Synchronization of Accelerator Sub-Systems with Ultimate Precision

Holger Schlarb

MSK/DESY

- Sources of arrival time jitter
- Synchronization systems
- Low level RF controls
- Beam based feedbacks
Increasing demands on synchronization …

… is driven by stability requirements

⇒ Bunch scale has changed from ns/ps to fs
⇒ High accelerator frequencies (e.g. CLIC)
⇒ Accelerator facility length increased ~ 100 m – e.g. 3.5 km

Free Electron Lasers:
- Compression control (exponential growth)
- Energy control (self seeding)
- Pump-probe experiments (fs-evolution)
- External seeding (efficiency)

External injection in laser plasma wakefield
- Plasma wavelength

Picosecond/femtosecond photon sources
- THz / Thomson radiation

fs-synchronization pre-requisite for new accelerator applications
Scope of synchronization …

Synchronization reach into many different physics & engineering disciplines and requires wide range of know-how and technologies

Radio Frequency:
- RF Master Oscillator and distribution (cables)
- High power RF (modulator, preamp., klystron, waveguide,…)
- Low level RF (field detection, driver, digital feedback loops,…)
- RF accelerator structure (reflection, cooling, phase advance,…)

Wide range of components: phase detectors / mixer / multiplier / divider / low noise amplifier / …

Optics & Lasers:
- Laser oscillator / amplifier (phase noise, piezo resonance, pump source,…)
- Laser pulse shaping & wavelength conversion & transport
- Optical reference & distribution (fiber optics, opto-electronics, photo-detection)

Environmental control:
- temperature / humidity / air pressure / vibration / ground motion / EMI / EMC

Controls & control theory:
- multiple feedbacks / PLL theory / automation / SISO / MIMO / …

Longitudinal electron beam dynamics
Sources of timing jitter in accelerator

Arrival time of electron bunch at seed source
Arrival time at entrance to undulator

Sources of timing jitter (uncorrelated): $\sigma_t = \left[\sum (w_j \sigma_j)^2 \right]^{1/2}$

- Photo–cathode laser: $w \sim 40–60\%$
- RF phase of RF gun (non–relativistic electrons): $w \sim 60–40\%$
- Seed and Pump–probe laser: $w \sim 100\%$
Sources of timing jitter in accelerator

Arrival time of electron bunch at seed source
Arrival time at entrance to undulator

Sources of timing jitter (uncorrelated): \(\sigma_t = [\sum (w_j \sigma_j)^2]^{1/2} \)

Energy chirp + energy dependent path length

\(V_{acc} \)

\(z/c \)
Sources of timing jitter in accelerator

Arrival time of electron bunch at seed source
Arrival time at entrance to undulator

Sources of timing jitter (uncorrelated): $\sigma_t = \left[\sum (w \sigma_{t,i})^2 \right]^{1/2}$

- Photo-cathode laser: $w < 5\%$
- RF phase of RF gun (non-relativistic electrons): $w < 5\%$
- RF amplitude and phase: $w \sim 100\%$
- Seed and Pump-probe laser: $w \sim 100\%$

Timing jitter behind BC

Voltage: $\Sigma_{t,f}^2 = \left(\frac{R_{56}}{c_0} \right)^2 \cdot \frac{\sigma_{V_1}^2}{V_1^2} + \left(\frac{C - 1}{C} \right)^2 \cdot \frac{\sigma_{\phi_1}^2}{\omega_{rf}^2} + \left(\frac{1}{C} \right)^2 \cdot \Sigma_{t,i}^2$

Phase

Incoming compression factor

C \sim 5 ... 20

- XFEL: 3.3 ps/%
- FLASH: 5.5 ps/%
- 2 ps/deg
- L-band
- 0.05 ps/ps
- C=20
Sources of timing jitter in accelerator

Several compressor stages

Case 0: $E_0 \ll E_1$ and $E'_0 \ll E'_1$

$$\Sigma^2_{t,1} = \left(\frac{R_{56}}{c_0} \right)^2 \cdot \frac{\sigma_{V_1}^2}{V_1^2} + \left(\frac{C_1 - 1}{C_1} \right)^2 \cdot \frac{\sigma_{\phi_1}^2}{\omega^2_{rf}} + \left(\frac{1}{C_1} \right)^2 \cdot \Sigma^2_{t,0}$$
Sources of timing jitter in accelerator

Several compressor stages

Case 0: $E_0 \ll E_1$ and $E'_0 \ll E'_1$

$$\Sigma^2_{t,1} = \left(\frac{R_{56}}{c_0} \right)^2 \cdot \frac{\sigma_y^2}{V_1^2} + \left(\frac{C_1 - 1}{C_1} \right)^2 \cdot \frac{\sigma_{\phi_1}^2}{\omega_{rf}^2} + \left(\frac{1}{C_1} \right)^2 \cdot \Sigma^2_{t,0}$$

1) Recursive case 0

Case 1: $E_1 \ll E_2$ and $E'_1 \ll E'_2$:

$$\Sigma^2_{t,2} = \left(\frac{R_{56,2}}{c_0} \right)^2 \cdot \frac{\sigma_y^2}{V_2^2} + \left(\frac{C_2 - 1}{C_2} \right)^2 \cdot \frac{\sigma_{\phi_2}^2}{\omega_{rf}^2} + \left(\frac{1}{C_2} \right)^2 \cdot \Sigma^2_{t,1}$$
Sources of timing jitter in accelerator

Several compressor stages

Case 0: $E_0 \ll E_1$ and $E'_0 \ll E'_1$

$$\Sigma_{t,1}^2 = \left(\frac{R_{56}}{c_0} \right)^2 \cdot \frac{\sigma_{V_1}^2}{V_1^2} + \left(\frac{C_1 - 1}{C_1} \right)^2 \cdot \frac{\sigma_{\phi_1}^2}{\omega_r^2} + \left(\frac{1}{C_1} \right)^2 \cdot \Sigma_{t,0}^2$$

1) Recursive case 0

Case 1: $E_1 \ll E_2$ and $E'_1 \ll E'_2$:

$$\Sigma_{t,2}^2 = \left(\frac{R_{56,2}}{c_0} \right)^2 \frac{\sigma_{V_2}^2}{V_2^2} + \left(\frac{C_2 - 1}{C'_2} \right)^2 \frac{\sigma_{\phi_2}^2}{\omega_r^2} + \left(\frac{1}{C_2} \right)^2 \Sigma_{t,1}^2$$
Sources of timing jitter in accelerator

Several compressor stages

RF gun \rightarrow Accelerator \rightarrow BC1 \rightarrow Accelerator \rightarrow BC2 \rightarrow Main Linac

\[\Sigma_{t,1}^2 = \left(\frac{R_{56}}{c_0} \right)^2 \cdot \frac{\sigma_{E_1}^2}{V_1^2} + \left(\frac{C_1 - 1}{C_1} \right)^2 \cdot \frac{\sigma_{\phi_1}^2}{\omega_{rf}^2} + \left(\frac{1}{C_1} \right)^2 \cdot \Sigma_{t,0}^2 \]

1) Recursive case 0

Case 0: \(E_0 \ll E_1 \) and \(E'_0 \ll E'_1 \)

\[\Sigma_{t,2}^2 = \left(\frac{R_{56,2}}{c_0} \right)^2 \cdot \frac{\sigma_{E_2}^2}{V_2^2} + \left(\frac{C_2 - 1}{C_2} \right)^2 \cdot \frac{\sigma_{\phi_2}^2}{\omega_{rf}^2} + \left(\frac{1}{C_2} \right)^2 \cdot \Sigma_{t,1}^2 \]

Remark: long wakefields helps to remove energy chirp from first accelerator section
Sources of timing jitter in accelerator

Several compressor stages

Case 0: $E_0 \ll E_1$ and $E'_0 \ll E'_1$

$$\Sigma_{t,1}^2 = \left(\frac{R_{56}}{c_0} \right)^2 \cdot \frac{\sigma_{V_1}^2}{V_1^2} + \left(\frac{C_1 - 1}{C_1} \right)^2 \cdot \frac{\sigma_{\phi_1}^2}{\omega_{rf}^2} + \left(\frac{1}{C_1} \right)^2 \cdot \Sigma_{t,0}^2$$

1) Recursive case 0

Case 1: $E_1 \ll E_2$ and $E'_1 \ll E'_2$:

$$\Sigma_{t,2}^2 = \left(\frac{R_{56,2}}{c_0} \right)^2 \cdot \frac{\sigma_{V_2}^2}{V_2^2} + \left(\frac{C_2 - 1}{C_2} \right)^2 \cdot \frac{\sigma_{\phi_2}^2}{\omega_{rf}^2} + \left(\frac{1}{C_2} \right)^2 \Sigma_{t,1}^2$$

Remark: long wakefields helps to remove energy chirp from first accelerator section
Sources of timing jitter in accelerator

Several compressor stages

Case 0: $E_0 \ll E_1$ and $E'_0 \ll E'_1$

$$\Sigma_{t,1}^2 = \left(\frac{R_{56}}{c_0} \right)^2 \frac{\sigma_V^2}{V_1^2} + \left(\frac{C_1 - 1}{C_1} \right)^2 \frac{\sigma_{\phi_1}^2}{\omega_{rf}^2} + \left(\frac{1}{C_1} \right)^2 \Sigma_{t,0}^2$$

1) Recursive case 0

Case 1: $E_1 \ll E_2$ and $E'_1 \ll E'_2$:

$$\Sigma_{t,2}^2 = \left(\frac{R_{56,2}}{c_0} \right)^2 \frac{\sigma_V^2}{V_2^2} + \left(\frac{C_2 - 1}{C_2} \right)^2 \frac{\sigma_{\phi_2}^2}{\omega_{rf}^2} + \left(\frac{1}{C_2} \right)^2 \Sigma_{t,1}^2$$

Case 2: $\phi_2 \approx 0^\circ$, $E'_2 \ll E'_1$:

$$\Sigma_{t,2}^2 = \left(\frac{R_{56,2}}{c_0} \right)^2 \frac{\sigma_V^2}{V_2^2} + \left(\frac{C_1 C_2 - 1}{C_2(C_1 - 1)} \right)^2 \left(\left(\frac{R_{56,1}}{c_0} \right)^2 \frac{\sigma_V^2}{V_1^2} + \left(\frac{C_1 - 1}{C_1} \right)^2 \frac{\sigma_{\phi_1}^2}{\omega_{rf}^2} \right) + \left(\frac{1}{C_1 C_2} \right)^2 \Sigma_{t,0}^2$$

Remark: long wakefields helps to remove energy chirp from first accelerator section
Sources of timing jitter in accelerator

Several compressor stages

RF gun \rightarrow Accelerator \rightarrow BC1 \rightarrow Accelerator \rightarrow BC2 \rightarrow Main Linac

Case 0: \(E_0 \ll E_1 \) and \(E'_0 \ll E'_1 \)

\[\Sigma_{t,1}^2 = \left(\frac{R_{56}}{c_0} \right)^2 \frac{\sigma_{V_1}^2}{V_1^2} + \left(\frac{C_1 - 1}{C_1} \right)^2 \frac{\sigma_{\phi_1}^2}{\omega_{rf}^2} + \left(\frac{1}{C_1} \right)^2 \Sigma_{t,0}^2 \]

1) Recursive case 0

Case 1: \(E_1 \ll E_2 \) and \(E'_1 \ll E'_2 \):

\[\Sigma_{t,2}^2 = \left(\frac{R_{56,2}}{c_0} \right)^2 \frac{\sigma_{V_2}^2}{V_2^2} + \left(\frac{C_2 - 1}{C_2} \right)^2 \frac{\sigma_{\phi_2}^2}{\omega_{rf}^2} + \left(\frac{1}{C_2} \right)^2 \Sigma_{t,1}^2 \]

Case 2: \(\phi_2 \approx 0^\circ \), \(E'_2 \ll E'_1 \):

\[\Sigma_{t,2}^2 = \left(\frac{R_{56,2}}{c_0} \right)^2 \frac{\sigma_{V_2}^2}{V_2^2} + \left(\frac{C_1 C_2 - 1}{C_2(C_1 - 1)} \right)^2 \left(\left(\frac{R_{56,1}}{c_0} \right)^2 \frac{\sigma_{V_1}^2}{V_1^2} + \left(\frac{C_1 - 1}{C_1} \right)^2 \frac{\sigma_{\phi_1}^2}{\omega_{rf}^2} \right) + \left(\frac{1}{C_1 C_2} \right)^2 \Sigma_{t,0}^2 \]
Sources of timing jitter in accelerator

Several compressor stages

Case 0: $E_0 \ll E_1$ and $E'_0 \ll E'_1$

$$
\Sigma^2_{t,1} = \left(\frac{R_{56}}{c_0} \right)^2 \frac{\sigma^2_{V_1}}{V_1^2} + \left(\frac{C_1 - 1}{C_1} \right)^2 \frac{\sigma^2_{\phi_1}}{\omega^2_{rf}} + \left(\frac{1}{C_1} \right)^2 \Sigma^2_{t,0}
$$

1) Recursive case 0

Case 1: $E_1 \ll E_2$ and $E'_1 \ll E'_2$:

$$
\Sigma^2_{t,2} = \left(\frac{R_{56,2}}{c_0} \right)^2 \frac{\sigma^2_{V_2}}{V_2^2} + \left(\frac{C_2 - 1}{C_2} \right)^2 \frac{\sigma^2_{\phi_2}}{\omega^2_{rf}} + \left(\frac{1}{C_2} \right)^2 \Sigma^2_{t,1}
$$

Case 2: $\phi_2 \approx 0^\circ$, $E'_2 \ll E'_1$:

$$
\Sigma^2_{t,2} = \left(\frac{R_{56,2}}{c_0} \right)^2 \frac{\sigma^2_{V_2}}{V_2^2} + \left(\frac{C_1 C_2 - 1}{C_2(C_1 - 1)} \right)^2 \left(\left(\frac{R_{56,1}}{c_0} \right)^2 \frac{\sigma^2_{V_1}}{V_1^2} + \left(\frac{C_1 - 1}{C_1} \right)^2 \frac{\sigma^2_{\phi_1}}{\omega^2_{rf}} \right) + \left(\frac{1}{C_1 C_2} \right)^2 \Sigma^2_{t,0}
$$
Sources of timing jitter in accelerator

Several compressor stages

Case 0: \(E_0 \ll E_1 \) and \(E'_0 \ll E'_1 \)

\[\Sigma_{t,1}^2 = \left(\frac{R_{56}}{c_0} \right)^2 \frac{\sigma_{V_1}^2}{V_1^2} + \left(\frac{C_1 - 1}{C_1} \right)^2 \frac{\sigma_{\phi_1}^2}{\omega_{rf}^2} + \left(\frac{1}{C_1} \right)^2 \Sigma_{t,0}^2 \]

1) Recursive case 0

Case 1: \(E_1 \ll E_2 \) and \(E'_1 \ll E'_2 \):

\[\Sigma_{t,2}^2 = \left(\frac{R_{56,2}}{c_0} \right)^2 \frac{\sigma_{V_2}^2}{V_2^2} + \left(\frac{C_2 - 1}{C_2} \right)^2 \frac{\sigma_{\phi_2}^2}{\omega_{rf}^2} + \left(\frac{1}{C_2} \right)^2 \Sigma_{t,1}^2 \]

2) Jitter from BC1 + additive jitter!

Case 2: \(\phi_2 \approx 0^\circ \), \(E'_2 \ll E'_1 \):

\[\Sigma_{t,2}^2 = \left(\frac{R_{56,2}}{c_0} \right)^2 \frac{\sigma_{V_2}^2}{V_2^2} + \left(\frac{C_1 C_2 - 1}{C_2(C_1 - 1)} \right)^2 \left(\left(\frac{R_{56,1}}{c_0} \right)^2 \frac{\sigma_{V_1}^2}{V_1^2} + \left(\frac{C_1 - 1}{C_1} \right)^2 \frac{\sigma_{\phi_1}^2}{\omega_{rf}^2} \right) + \left(\frac{1}{C_1 C_2} \right)^2 \Sigma_{t,0}^2 \]
Sources of timing jitter in accelerator

Several compressor stages

Case 0: $E_0 \ll E_1$ and $E'_0 \ll E'_1$

$$\Sigma^2_{t,1} = \left(\frac{R_{56}}{c_0} \right)^2 \frac{\sigma^2_{V_1}}{V_1^2} + \left(\frac{C_1 - 1}{C_1} \right)^2 \frac{\sigma^2_{\phi_1}}{\omega^2_{r_f}} + \left(\frac{1}{C_1} \right)^2 \Sigma^2_{t,0}$$

1) Recursive case 0

Case 1: $E_1 \ll E_2$ and $E'_1 \ll E'_2$:

$$\Sigma^2_{t,2} = \left(\frac{R_{56,2}}{c_0} \right)^2 \frac{\sigma^2_{V_2}}{V_2^2} + \left(\frac{C_2 - 1}{C'_2} \right)^2 \frac{\sigma^2_{\phi_2}}{\omega^2_{r_f}} + \left(\frac{1}{C_2} \right)^2 \Sigma^2_{t,1}$$

2) Jitter from BC1 + additive jitter!

Case 2: $\phi_2 \approx 0^\circ$, $E'_2 \ll E'_1$:

$$\Sigma^2_{t,2} = \left(\frac{R_{56,2}}{c_0} \right)^2 \frac{\sigma^2_{V_2}}{V_2^2} + \left(\frac{C_1 C_2 - 1}{C_2(C_1 - 1)} \right)^2 \left(\left(\frac{R_{56,1}}{c_0} \right)^2 \frac{\sigma^2_{V_1}}{V_1^2} + \left(\frac{C_1 - 1}{C_1} \right)^2 \frac{\sigma^2_{\phi_1}}{\omega^2_{r_f}} \right) + \left(\frac{1}{C_1 C'_2} \right)^2 \Sigma^2_{t,0}$$

Remark: long wakefields helps to remove energy chirp from first accelerator section.
Various approaches:

1) RF distribution

\[f \sim 100\text{MHz} \ldots \text{GHz} \]
Synchronization schemes …

Various approaches:

1) RF distribution

\[f \sim 100\text{MHz} \ldots \text{GHz} \]

standard
Synchronization schemes …

Various approaches:

1) RF distribution

f ~ 100MHz …GHz
Synchronization schemes …

Various approaches:

1) RF distribution

\[f \sim 100\text{MHz} \ldots \text{GHz} \]
Synchronization schemes …

Various approaches:

1) RF distribution

\[f \sim 100\text{MHz} \ldots \text{GHz} \]
Various approaches:

1) RF distribution

\[f \sim 100\text{MHz} \ldots \text{GHz} \]
Various approaches:

1) RF distribution

\[f \approx 100\text{MHz} \ldots \text{GHz} \]
Synchronization schemes ...

Various approaches:

1) RF distribution

\[f \sim 100\text{MHz} \ldots \text{GHz} \]
Synchronization schemes …

Various approaches:

1) RF distribution

\[f \sim 100\text{MHz} \ldots \text{GHz} \]
Synchronization schemes …

Various approaches:

1) RF distribution

\[f \sim 100\text{MHz} \ldots \text{GHz} \]
Synchronization schemes …

Various approaches:

1) RF distribution

\[f \sim 100 \text{MHz} \ldots \text{GHz} \]
Various approaches:

1) RF distribution

\[f \sim 100 \text{MHz} \ldots \text{GHz} \]
Synchronization schemes …

Various approaches:

1) RF distribution
 $f \sim 100\text{MHz} \ldots \text{GHz}$

2) Carrier is optically
 $f \sim \text{GHz}$
Synchronization schemes …

Various approaches:

1) RF distribution

$\text{LO} \rightarrow \text{MZT} \rightarrow \text{standard} \rightarrow \text{interferometer} \rightarrow \text{MO}$

$f \sim 100\text{MHz} \ldots \text{GHz}$

2) Carrier is optically

$\text{LO} \rightarrow \text{MZT} \rightarrow \text{f} \sim \text{GHz}$

3) Carrier is optically + detection

$\text{LO} \rightarrow \text{MZT} \rightarrow \text{f} \sim 200\text{ THz}$
Various approaches:

1) RF distribution
 - $f \sim 100\text{MHz} \ldots \text{GHz}$

2) Carrier is optically
 - $f \sim \text{GHz}$

3) Carrier is optically + detection
 - $f \sim 200\text{THz}$

4) Pulsed optical source
 - $\Delta f \sim 5\text{THz}$

H. Schlarb, LINAC12, Tel Aviv, Israel, September 9-14, 2012
Synchronization schemes …

Various approaches:

1) RF distribution

\[\Delta t \approx \frac{\Delta f}{f} \]

2) Carrier is optically

3) Carrier is optically + detection

4) Pulsed optical source

H. Schlarb, LINAC12, Tel Aviv, Israel, September 9-14, 2012
Pulsed optical synchronization system

EDFL, soliton, $\Delta t<200\text{fs}$, $f=216\text{MHz}$
saturable absorber, $P > 100\text{mW}$,
phase noise $<10\text{fs}$ ($\geq1\text{kHz}$)

Free space distribution
+ EDFA

Dispersion comp.,
Polarization contr.,
Collinear bal. opt.
cross-corr.

Other lasers
Two color bal.
Opt. cross-corr.

Laser pulse

Laser MLO

MO-RF

Narrow Band.

Distribution

Optical link
<5fs

Direct
Optical link
<5fs

Optical link
<5fs

LO-RF

Direct/Interferometer

DWC/Kly

FB

A & ϕ cavity

Desired point-to-point stability $\sim 10\ \text{fs}$

Main issue: robustness, stability and maintainability \Rightarrow Prototype at FLASH
Master Laser Oscillator (MLO)

- Commercial: OneFive ORIGAMI-15
- Repetition rate: 216,66 MHz
- Average power: > 100 mW
- Pulse duration: < 200 fs
- Mechanically robust, easy to maintain
- Phase noise ~ 5 fs rms [1 kHz-10 MHz]

Courtesy: S. Schulz
Master Laser Oscillator (MLO)

Optical lock of two laser oscillators

Balance, background free detection

Courtesy: S. Schulz
Master Laser Oscillator (MLO)

Optical lock of two laser oscillators

Balance, background free detection

High sensitivity at low noise

14 as/mV
Master Laser Oscillator (MLO)

Optical lock of two laser oscillators

Needs:
- Low noise laser osc.
- High sensitive detection
- Fast actuator (PZT/driver)

Balance, background free detection

High sensitivity at low noise

14 as/mV

Courtesy: S. Schulz
Master Laser Oscillator (MLO)

Optical lock of two laser oscillators

Needs:
- Low noise laser osc.
- High sensitive detection
- Fast actuator (PZT/driver)

Balance, background free detection

Out-of-loop

Jitter
< 3 fs (1Hz-1MHz)

Drift: 6 fs pkpk @ 30h

High sensitivity at low noise

14 as/mV
meanwhile rather reliable operation (still babysitting required)
switch from 10GHz -> 40GHz bandwidth for low charge operation
new front-end with improved thermal stability

reduced dependency on beam orbit
reduced dependency on bunch charge
sensitivity in terms of
% modulation per fs timing change
Bunch Arrival Monitor

meanwhile rather reliable operation (still babysitting required)
switch from 10GHz -> 40GHz bandwidth for low charge operation
new front-end with improved thermal stability

reduced dependency on beam orbit
reduced dependency on bunch charge
sensitivity in terms of
% modulation per fs timing change

pick-up design drawing, courtesy: K. Hacker

 Courtesy: M. Bock, DESY
Bunch Arrival Monitor

meanwhile rather reliable operation (still babysitting required)
switch from 10GHz -> 40GHz bandwidth for low charge operation
new front-end with improved thermal stability

reduced dependency on beam orbit
reduced dependency on bunch charge
sensitivity in terms of
% modulation per fs timing change

uncorrelated jitter over 4300 shots:
8.4 fs (rms)

Courtesy: M. Bock, DESY
Example: Arrival stability at FLASH

 Arrival time measurements

Typically values

- 60-100fs rms from injector
- 50-60fs rms behind BC2
- 40-50fs rms exit LINAC

Global slow feedback implemented

Intra-train repetitive error correction implemented

Fast feedback reduce Bunch-to-bunch jitter ~ 20 fs
RF generation from optical pulses

Direct conversion with photo detector (PD)
- Low phase noise (to be proven at end-station)
- Temperature drifts (0.4ps/C°)
- AM to PM conversion (0.5-4ps/W)
- Potential for improvement (corporation with PSI)

\[T = \frac{5\text{ns}}{f_{\text{rep}}} \]

\[f_{\text{rep}} = \frac{n\times f_{\text{rep}}}{2\pi} \]

\[f = n\times f_{\text{rep}} \]
Direct conversion with photo detector (PD)
- Low phase noise (to be proven at end-station)
- Temperature drifts (0.4ps/C°)
- AM to PM conversion (0.5-4ps/W)
- Potential for improvement (corporation with PSI)
RF generation from optical pulses

Direct conversion with photo detector (PD)
- Low phase noise (to be proven at end-station)
- Temperature drifts (0.4ps/C°)
- AM to PM conversion (0.5-4ps/W)
- Potential for improvement (corporation with PSI)

Time domain

Frequency domain

\[T = \frac{5}{f_{\text{rep}}} = \frac{1}{f_{\text{rep}}} \]

\[f = nf_{\text{rep}} \]

\[\Delta \Phi = \text{phase difference between counter-propagating pulses in the Sagnac-loop} \]
RF generation from optical pulses

Direct conversion with photo detector (PD)
- Low phase noise (to be proven at end-station)
- Temperature drifts (0.4ps/C°)
- AM to PM conversion (0.5-4ps/W)
- Potential for improvement (corporation with PSI)

Sagnac loop interferometer
- balanced optical mixer to lock RF osc.
- insensitive against laser fluctuation
- Very low temperature drifts

f=1.3GHz jitter & drift < 10 fs rms limited by detection
Remark: much easier at higher frequencies …
RF generation from optical pulses

Direct conversion with photo detector (PD)
- Low phase noise (to be proven at end-station)
- Temperature drifts (0.4ps/C°)
- AM to PM conversion (0.5-4ps/W)
- Potential for improvement (corporation with PSI)

Sagnac loop interferometer
- balanced optical mixer to lock RF osc.
- insensitive against laser fluctuation
- Very low temperature drifts

f=1.3GHz jitter & drift < 10 fs rms limited by detection

Remark: much easier at higher frequencies …
RF generation from optical pulses

Direct conversion with photo detector (PD)
- Low phase noise (to be proven at end-station)
- Temperature drifts (0.4ps/C°)
- AM to PM conversion (0.5-4ps/W)
- Potential for improvement (corporation with PSI)

Sagnac loop interferometer
- Balanced optical mixer to lock RF osc.
-Insensitive against laser fluctuation
- Very low temperature drifts

f=1.3GHz jitter & drift < 10 fs rms limited by detection
Remark: much easier at higher frequencies …
RF generation from optical pulses

Direct conversion with photo detector (PD)
- Low phase noise (to be proven at end-station)
- Temperature drifts (0.4ps/C°)
- AM to PM conversion (0.5-4ps/W)
- Potential for improvement (corporation with PSI)

Sagnac loop interferometer
- balanced optical mixer to lock RF osc.
- insensitive against laser fluctuation
- Very low temperature drifts

f=1.3GHz jitter & drift < 10 fs rms limited by detection

Remark: much easier at higher frequencies …
RF generation from optical pulses

Direct conversion with photo detector (PD)
- Low phase noise (to be proven at end-station)
- Temperature drifts (0.4ps/C°)
- AM to PM conversion (0.5-4ps/W)
- Potential for improvement (corporation with PSI)

Sagnac loop interferometer
- balanced optical mixer to lock RF osc.
- insensitive against laser fluctuation
- Very low temperature drifts

f=1.3GHz jitter & drift < 10 fs rms limited by detection
Remark: much easier at higher frequencies …

MZI based balanced RF lock
- new scheme, under investigation
MZI based balanced laser-to-RF phase detector

Locking low-noise microwave oscillator to laser (or visa versa)

RF Oscillator $f_{VCO} = n f_r$, split and delayed

See: Accelerator 2011, Highlights and Annual Report, DESY
http://www.desy.de/ueber_desy/jahresberichte/index_ger.html

Sketch of effect due to VCO phase shift
MZI based balanced laser-to-RF phase detector

Locking low-noise microwave oscillator to laser (or visa versa)

RF Oscillator $f_{\text{VCO}} = n f_r$, split and delayed

See: Accelerator 2011, Highlights and Annual Report, DESY
http://www.desy.de/ueber_desy/jahresberichte/index_ger.html

Sketch of effect due to VCO phase shift

Residual jitter

Out-of-loop

Residual drift

Drift < 14 fs pkpk (3.8 fs rms)

Courtesy: T. Lamb, DESY
Sketch of the controller structure

- Real-time FPGA processing of 8/16 RF channels and microsecond latency
- Generator driven Multiple-in-Multiple-out feedback controller, with adaptive feed forward drive
- Super-conducting RF cavities with ~300 Hz bandwidth
Precision RF field detection (noise limitation)

Non-IQ sampling field detection limited by:
- Receiver active (< 4 fs)
- Receiver passive (< 2 fs)
- LO-Generation (< 2 fs)
- ADC (limitation) (~5 fs)

at 1.3 GHz. Can be better at high frequencies.

Measurement with ADC

ΔA/A = 3.2E-5

ΔP/P = 0.0022° (5 fs)

Courtesy: F. Ludwig, DESY

H. Schlarb, LINAC12, Tel Aviv, Israel, September 9-14, 2012
Problem:
- Mixer phase drifts $\sim 0.2^\circ/K$
- Mixer amplitude drifts $\sim 0.2\%/K$
+ dependence also on humidity
+ mixer drift not equal (one PCB)

\Rightarrow Reference tracking for mixer drift removal

Figure 3: Measured (a) amplitude and (b) phase deviation for the injected corrected signal (blue marked) and uncorrected (green marked) over 60 hours.

Courtesy: F. Ludwig, DESY
MTCA.4 crate system used as LLRF hardware platform

Integration to low-noise, high processing power environment

LN Power Modules

Timing/Interlock

EMC/EMI

RF Backplane

Grounding!

Controller

Controller

Instrumentation Technologies

- 2 channel vector modulator
 (108MHz, 2.5GHz, 1.3GHz, 3.3GHz)
- 16 bit
- LLRF Controller, 6 Fiber-Ports, 2 GB-Links
- FPGA(70), DSP

EMC/EMI

- Klystron Driver

RF Backplane

Integration to low-noise, high processing power environment

H. Schlarb, LINAC12, Tel Aviv, Israel, September 9-14, 2012
Calibrated controller gain

System gain w/o notch

Amplitude stability σ_A

1/T ~ 800 kHz

No impact on beam but causes instabilities of regulation

Digital notch filter

System gain with notch

1/T ~ 3 MHz

Has impact on beam and causes instabilities of regulation

MTCA.4 crate system used as LLRF hardware platform

8/9 pi modes

7/9 pi modes

THPM086
New Beam Based Feedbacks algorithm

- Arrival FB on ACC1 only using monitors after BC1 \(\Rightarrow \) \(\sim 20 \text{ fs routine} \)
- Arrival FB on ACC2 (was not active) Test this week \(\Rightarrow \) \(\sim 10-15 \text{ fs expected} \)
- Ultimate: broadband NRF cavity & ultra-low latency digital feedback system From simulations \(\Rightarrow \) \(\sim 5 \text{ fs expected} \)

Achieved arrival time stability

Latency of system

X 4 \(\sim 20 \text{fs} \)

Courtesy: Ch. Schmidt, S. Pfeiffer, DESY

H. Schlarb, LINAC12, Tel Aviv, Israel, September 9-14, 2012
Thanks you for attention
Intra-train beam based feedbacks (FLASH)

Beam Based Feedbacks:
- Arrival time (BAM) and bunch compression (BCM) after chicane BC1 are simultaneously correct amplitude and phase in ACC1
- BAM and BCM after BC2 correct amplitude and phase in ACC23
- Charge measurement used for beam loading compensation

Courtesy: Ch. Schmidt, S. Pfeiffer, DESY
Intra-train beam based feedbacks (FLASH)

Beam Based Feedbacks:
• Arrival time (BAM) and bunch compression (BCM) after chicane BC1 are simultaneously correct amplitude and phase in ACC1 /39
• BAM and BCM after BC2 correct amplitude and phase in ACC23
• Charge measurement used for beam loading compensation

Courtesy: Ch. Schmidt, S. Pfeiffer, DESY
H. SchlARB, LINAC12, Tel Aviv, Israel, September 9-14, 2012
Beam Based Feedbacks:
• Arrival time (BAM) and bunch compression (BCM) after chicane BC1 are simultaneously correct amplitude and phase in ACC1/39
• BAM and BCM after BC2 correct amplitude and phase in ACC23
• Charge measurement used for beam loading compensation

Achieved arrival time stability

- Both intra-train FB on
- MIMO controller
- Repetitive pkpk deviation < 100fs

< 22 fs

Latency of system

Courtesy: Ch. Schmidt, S. Pfeiffer, DESY

H. Schlarb, LINAC12, Tel Aviv, Israel, September 9-14, 2012
Fiber Link Stabilization (optically)

216 MHz Er-doped fiber laser

Fiber Link Stabilization (optically)

216 MHz Er-doped fiber laser

Balanced optical cross-correlator

H. Schlarb, LINAC12, Tel Aviv, Israel, September 9-14, 2012
Fiber Link Stabilization (out-of-loop)

For 400m link !!!
3.5 km will be considerably more difficult!
⇒ Dispersion management
⇒ Accumulated delays
⇒ PMD/spurious SPM
⇒ Polarization control

360 as (rms) timing jitter from 1 Hz to 100 kHz
3.3 fs (rms) timing jitter from 35 μHz to 100 kHz

H. Schlarb, LINAC12, Tel Aviv, Israel, September 9-14, 2012

Courtesy: F. Kaertner
Fiber Link Stabilization (optically)

3rd generation of opto-mechanics
typical in loop jitter ~ 1-2 fs rms (also smaller)

Courtesy: Bock/Schultz/Lamb
Fiber Link Stabilization (optically)

3rd generation of opto-mechanics
typical in loop jitter ~ 1-2 fs rms (also smaller)

Experience:
- Operate reliably
- Some links fast AM noise observed

Recent developments:
- Matching optics
- Retro-reflector delay line with precision stepper motor
- Isolation to FSD
- Link layout changed

Current developments 2011/12:
- PCB for readout electronics
- Low noise balanced detector
- Ultra-low noise LDD driver
- uTCA based digital FB controller

XFEL:
- Dispersion management need to be improved (2 test links in 26a for 3.5km)
- Delay stage too short for long links and large temp. changes (PSOF fibers)

Courtesy: Bock/Schultz/Lamb