The High-Current Energy Recovery Linac at Brookhaven National Laboratory Presented at LINAC12 Conference, Tel-Aviv, Israel

RHIC: Discovery of a "perfect" liquid of strongly interacting quarks and gluons. **Deep mystery:** "missing" proton spin

Ilan Ben-Zvi, Head, Accelerator R&D Division, **Collider-Accelerator Department, Brookhaven National Laboratory Brookhaven Professor for Accelerator Physics, Stony Brook University**

Iniversity

eRHIC: polarized electron ERL colliding with RHIC beams

Not shown: Energy loss and energy spread compensation linacs, crab cavities for electrons and ions.

eRHIC R&D at the Collider-Accelerator Department

Schematic diagram of the Combiner/Splitter 2nd LINAC at 2 o' clock (Acceleration cycle)

It is the system of the beam lines which **Combines** the beams of the **ARCS** into the LINAC or **Splits** the beams exiting the LINAC into the **ARCS**

eRHIC machine design

Suppression of kink instability

By chromaticity: $\xi \sim +4$

Complete suppression by feedback

Kink instability – a possible instability of the proton beam caused by its interaction with the electrons. Specific for linac-ring scheme.

eRHIC machine design

704 MHz 5-cell niobium cavity for high-current ERL

- Total HOM power to extract is 7.3 kW per cavity at eRHIC 3.5 nC, 50 mA, 6 passes up + 6 passes down energy (loss factor 3.5 V/pC).
 - See presentation MOPB063 by Sergey Belomestnykh in this conference on the eRHIC SRF linac

HOM damping with antenna-type couplers

50 Ohm

HOM high-pass filter

C2

L2

L3

2.2

Frequency / GHz

2.4

- A two-stage high-pass filter rejects fundamental frequency, but allows propagation of HOMs toward an RF load.
 - 1st HOM is at 0.82 GHz.

High-Current ERL R&D

3.4

3.6

3.8

3.2

3

Wield to

beam tube

Coupling probe

S2,1

Outer conductor

C1

L1

2.8

2.6

HOM damping

Q ext with 2 120 degree HOM couplers at each side 1.00E+06 1 00F+05 1.00E+04 1.00E+03 1.00E+02 1.00E+01 1.00E+00 1.2 1.4 1.6 1.8 2 1.00E-01 Frequency [GHz] **High-Current ERL R&D**

NATIONAL LABORATORY

- Damping of dipole modes has been considered important to avoid beam breakup (BBU).
- We simulated a model with just two HOM couplers per side using CST MWS, showing excellent damping.
 - Modes at 1.62 GHz have R/Q of ~0.1 Ohm.
- **Recent work by Vladimir Litvinenko** points to a method of avoiding BBU by using the chromaticity in the ERL. See presentation xxxx in this conference.

The copper cavity prototype

Cavity was fabricated by AES. Tuned to specs (98.5% field flatness). Acceptance measurements are finished. Detailed HOM studies done.

SRF Photocathode RF gun

Cut-away view of the 704 MHz elliptical half-cell SRF gun.

Photocathode injection is on the left, beam transport is on the right.

More details in Developing of Superconducting RF Guns At BNL,

S. Belomestnykh et al. MOPB064

SRF Photocathode RF gun

•The 704 half-cell elliptical shape SRF gun has two Fundamental input Power Couplers (FPCs) allowing to deliver 1 MW of RF power to 0.5 A - 2 MeV electron beam. •HOM damping is provided by an external beam-line ferrite load with ceramic break. •See presentation by Sergey Belomestnykh in this

conference

High QE Photocathode for RF gun

Deposition System

- 2 transport units to deliver cathodes
- Base pressure 1x10⁻¹⁰ Torr
- System designed to eliminate cross contamination of sources
- Provides for quicker source exchange
- Robust CsK2Sb photocathode, high QE (8%) and low thermal emittance (0.37 microns / mm-rms) at a wavelength of 543 nm.

Transport unit

- 2 UHV systems with LN₂ cooling
- Precision mounting to gun and preparation chamber

R&D ERL, target: 500 mA at 20 MeV

- Test the key components of the High Current SRF ERL
- Test the beam current stability criteria for CW beam currents
- measure beam quality
- measure halo

•

٠

• measure spurious radiations

Coherent electron Cooling Proof-of-Principle experiment

20 cathode funneling polarized electron gun ("Gatling Gun")

"Gatling Gun"

- RHIC is a highly successful ion and polarized electron collider.
- eRHIC is proposed as the addition of an electron ERL to collider (polarized) electrons with (polarized) RHIC beams.
- The eRHIC electron machine is a high-energy, high-current ERL.
- R&D is currently carried out on the eRHIC collider design, including various elements of the ERL, to reduce the risk and/or cost of the machine:
 - The 50 mA polarized electron gun
 - Coherent electron Cooling proof-of-principle experiment
 - A 300 mA 20 MeV R&D ERL
 - Highly-damped 704 MHz 5-cell ERL cavities

