Overview of SACLA Present Status

XFEL 8Gev, 0.3 nc, 0.06 nm light

SCSS Test Accelerator

250 MeV, 0. 3 nc, 50 nm light

SPring

RIKEN

SACLA

8GeV Photon Ring

Yuji Otake,

日本

範回

0

on behalf of all the staffs of SACLA

XFEL Research & Development Division, RIKEN SPring-8 Center, RIKEN Harima Institute

Machine Configuration

Compact XFEL based on 1. Low-emittance thermionic electron gun, 2. C-band high-gradient acceleration and 3. in-vacuum UNDs designed to realize; (a) small scale

- (b) laser stability
- (c) operation reliability

Short-period In-vacuum undulators

TARGET PERFORMANCE OF "SACLA"

and and	Wavelength	< 0.1 nm	4	000-			
	Peak Power	~ 20 GW	T (A)	8000-	Electron pulse		
	X-ray Pulse Length	200 fs ~ 20 fs	eak currer 5	2000-			
	X-ray Pulse Energy	Max 0.4 mJ	<u>∽</u> 1	000			
	Photon Flux	2 x 10 ¹¹ p/pulse			Time (fs)		
語といい	Peak Brightness	1 x 10 ³³ p/mm ² / mrad ² /0.1% BW		60-			
	Repetition	~ 60 pps	(WE	-			
12:4	e Beam	8 GeV x 0.3 nC	er (C	40-			
	0 17	$0.8 \ \pi \text{mm.mrad}, 3 \text{ kA}$	Pow				
To realize this X-ray laser performance, the temporal electron beam stability must be less than 100 fs							
during the bunching process. Therefore, th				-30	-20 -10 0 10 20 30		
demanded if phase & amplitude stabilities are less					Time (fs)		
u	han rou is a round in the bunching process communed larget X-ray pulse of 0.1 nm						

by simulation.

Target X-ray pulse of 0.1 nm (SIMPLEX simulation)

Low-emittance Electron Gun

CeB6 500 kV pulse electron gun

5 mm

-500

0

2

3

500 kV, 3 µs(FWHM) pulse and 1A electron beam

C-band Acceleration Unit to generate over 37 MV/m

Acceleration Gradient & RF Trip Rate

RF System Satisfying a Target Gradient of 35 MV/m

Undulator Specifications

XFEL Undulator Main Parameters

Magnet Structure	Hybrid Type
Material	NdFeB
Length (m)	5
Period Length (mm)	18
Number of Periods	277
Number of Undulators	18
Minimum Gap (mm)	3.5
Maximum K	2.2
K@λ=0.12 nm, E=7 GeV	~1.8

Magnetic Phase Error, 3.3 deg.

Electron Beam Normalized Emittances

Extracted e-beam from e-gun Energy = 500 keV Measured by slit-scan

1.36 mm-mrad in horizontal1.68 mm-mrad in vertical

Q-scan at BC3 exit (Horizontal)

SASE & Spontaneous Spectrum

Wavelength Changeability of SACLA

Lasing Intensity stability

09:00

Time

Spatial Profile of X-ray Laser

Si(111) DCM covering photon energy range from 4 to 30 keV

Focused down to 1.1 μm x 0.9 μm (FWHM)

260 280 300 320 340 360 380 400 420 440 460

Photon energy: 10 keV 110 m from the exit of ID18 Beamline optics

Ablation pattern by focused XFEL on gold-deposited film

SACLA with 700 m long was constructed (short machine). It stably lased of up to 0.06 nm for more than several days (< 100 fs electron beam temporal stability) and is now under user operation. We have an acceptable stability level of the machine with operator's trimming of once or twice a hour to the injector cavity's phases and amplitude.

Lasing intensity drift caused by the thermal characteristic drifts of accelerator components exist, however, we now improve it to become without the trimming.

Maximum pulse energy Typ. 120 ~ Max. 250 μJ Wavelength range 0.063 ~ 0.16 nm Intensity fluctuation 15 % (rms) Reproducibility • w/o beam FB keeping the peak current • at 60~70% of peak intensity

Related Presentations

- + TUPB006, T. Asaka et al., STABILITY PERFORMANCE OF THE INJECTOR FOR SACLA/XFEL AT SPRING-8.
- MOPB005, T. Inagaki et al., HIGH GRADIENT OPERATION OF 8-GEV C-BAND ACCELERATOR IN SACLA.
- MOPB084, T. Sakurai et al., DESIGN OF A C-BAND DISK-LOAD TYPE ACCELERATING STRUCTURE FOR A HIGHER PULSE REPETITION RATE IN THE SACLA. ACCELERATOR.