Plasmas, Dielectrics and the Ultrafast: First Science and Operational Experience at FACET

LINAC12, Tel-Aviv, Israel

Christine Clarke 13th September 2012

Introduction to FACET

<u>Facility for Advanced Accelerator Experimental Tests</u>

- FACET uses 2/3 SLAC linac to deliver electrons to the experimental area in Sector 20
- Mission Need Statement for an Advanced Plasma Accelerator Facility (CD-0) in 2008
- User Facility in 2012
- First User Run was April-July 2012

FACET Beamline

FACET's Experimental Area

Bunch Length Measurements

- The time profile of the bunch is important to know at FACET
- Pulse by pulse relative indication of bunch length through CTR
- Direct imaging of longitudinal profile by xTCAV (invasive)
- Experimental diagnostics bunch profile reconstructions through Smith-Purcell and CTR

5

Two-bunch production

Ultraf Cha BEAM Notch Collimator THz Table **xTCAV** Bend Magnet Wiggler Wire Scanner De-focusing Quadrupole -D- Vacuum Gauges Beam Position Monito E Vacuum Pump O Toroid Focusing Quadrupole Horizontal/Vertical Correctors M Vacuum Valves Profile Monitor Sextupole Ion Chamber

- In 2012, started commissioning Notch Collimator for creating two bunches
- Tantalum blade inserted into first leg of W chicane
- x ∝ ΔE/E
- This provides drive and witness bunches for wakefield acceleration experiments

SLAC

Profile screen image with xTCAV on ⁶

The FACET Beam

 FACET's electron beam was commissioned during two periods- 12 weeks in 2011 and 5 weeks in 2012

- Downtime period allowed
 - Installation of new diagnostics
 - Alignment of sections of linac
 - Simulation work and development of new software
- Accelerator hardware uptime rose from ~75% to ~90% by User Run
- Between 2011 and 2012, there was considerable improvement in tuning on beam size (best sizes were 30µm in 2011, 20µm in 2012)
- Machine Development studies were scheduled throughout User Run

Parameter	Typical Value 2012	Best Value 2012	
Energy (GeV)	20.35		
Charge per pulse	2.7 nC (1.7e10 e-)	3.0 nC (2.0e10 e-)	
Bunch length σ_z (µm)	20-25	20	
Beam size $\sigma_x x \sigma_y$ (µm)	35 x 35	20 x 23	
Particle	Electrons		

7

Operational Challenges

- Experiments need:
 - To change location of beam waist
 - To change bunch length
 - To change charge
 - To access FACET tunnel
- Solutions to meet needs:
 - Plan experiments well
 - Scheduled access day each week
 - Continuous study of the machine
 - Operating Procedures
 - Hands-on operators, constant attention and documentation
- Breakage of OTR foils few diagnostics in experimental area
- ~kRad/week doses in experimental area dead cameras, restrictions on access

SLA0

E-200 Multi-GeV Plasma Wakefield Acceleration - Apparatus

- SLAC, UCLA, MPI
- FACET's high power electron beam ionises alkali vapour and interacts with the plasma
- Wakefields accelerate part of the bunch
- Multiple plasma cells could access the energy frontier –
 - FACET studies the single plasma cell
 - multiple stages planned for FACETII
- Unique SLAC Facilities:
 - High Beam Energy, Short Bunch Length, High Peak Current, Power Density

10¹⁴-10¹⁷ e⁻/cm³ Li or Rb plasma, L= 20-30 cm

E-200 Multi-GeV Plasma Wakefield Acceleration - Results

 A Cherenkov light based spectrometer on the dump table is used to measure the energy loss and gain of particles in the beam

SLAC

- Lithium often small interaction, occasionally significant acceleration observed
- Rubidium consistently lots of interaction and good acceleration

Beam bypassing plasma

E-201 Wakefield Acceleration in Dielectric Structures

SLAC

- UCLA, Euclid Techlabs, Tech-X, Radiabeam Technologies, NRL, SLAC, MPI, Argonne FACET provides unique high-field regime to test limits of dielectric wakefield structures
- >1GV/m acceleration anticipated Slab-symmetric Coherent Cherenkov Radiation (CCR) spectrum gives information about the excited modes
 - Narrowband THz frequency light source

Structures

Conductor

The FACET beam is sent through prototype structures of varying dimensions and materials

E-204 RF Breakdown Test of Metal Accelerating **Structure**

Accelerating structure made by Makino. Beam gap is 0.9 mm.

- SLAC
- Wakefield acceleration with metallic structures
- First study: breakdown properties of structures at high surface fields
- Ultra-short FACET bunch excites THz frequency, multi-GV/m surface fields
- RF power extracted through output horn to a detector

Valery Dolgashev, Sami Tantawi, SLAC

E-202 Study of Ultrafast Processes in Magnetic Solids following Excitations with Electron Beams

• SLAC, IBM, Univ. Regensburg, Bogolyubov Institute <u>A novel process</u> –ballistic /precessional switching

- Fastest and most efficient method of switching What is the microscopic origin for observed phenomena?
 - Exposed magnetic samples to the electron beam
 - Began study of ferroelectric films and resistive memories
 - Exposed materials used in spintronics applications
 - Signs of polarisation switching in PZT

Observed electrical field induced magnetic anisotropy

E-203 Determination of the time profile by means of coherent Smith-Purcell radiation

- Univ. Oxford, LAL Orsay, Univ. Valencia, ENS Lyon, Los Alamos, SLAC
- Comparatively cheap, compact, non-destructive bunch length diagnostic
- FACET provides ultra-short bunch length regime

Data from August commissioning and April this year

- Main uncertainties from the inaccurate knowledge of the beam-grating distance
- Not yet one-shot, data were averaged over time and beam conditions may have changed

Can directly compare measurements to transverse deflecting cavity and E-206

E-206/T-500 THz Studies of FACET Source

For

- THz frequency electromagnetic radiation is produced at 1µm titanium foil inserted into beamline upstream of IP Area
- Goal: characterize THz pulses, determine peak fields
- Measure temporal profile and spectrum – affected by source size
- Determine peak electric and magnetic fields.
- Can also reconstruct electron bunch length
- There is interest from SLAC's PULSE and SIMES to use extracted THz for materials studies

1.2

Reconstructed Profile of Electron Bunch

Low-Frequency Restoration

1.4

For incident e- bunch		3nC, 300µmx30µn	n
Energy per pulse		0.46 mJ	
Focus size σ _r		1 mm	
Electric field strength at focus		~0.057 V/Å	
	Tha	nks A. Fisher and Z. Wu	1

Future at FACET

- New features to the facility are coming:
 - E-200 PWFA is installing a 10TW Laser to pre-ionise plasma
 - Positrons will be commissioned in 2013 for delivery to experiments in 2014
 - Designs for a THz transport line are in place to take THz up to the laser room
- FACET's second User run is in spring 2013
 - New experiments are coming
 - Self-modulation of long lepton bunches
 - Trojan Horse PWFA
 - Wakefield measurements in CLIC accelerating structure
 - Existing experiments will continue
 - Plasma Wakefield Acceleration with two bunches and pre-ionised plasma
 - Dielectric Wakefield Acceleration
 - Ultrafast Magnetic Switching
 - Smith-Purcell bunch profile diagnostic
 - THz-based Experiments
 - Next proposal review is in October 2012
- FACET continues to run 4-5 months/year until 2016

Future at FACET

- New features to the facility are coming:
 - E-200 PWFA is installing a 10TW Laser to pre-ionise plasma
 - Positrons will be commissioned in 2013 for delivery to experiments in 2014
 - Designs for a THz transport line are in place to take THz up to the laser room
- FACET's second User run is in spring 2013
 - New experiments are coming
 - Self-modulation of long lepton bunches
 - Trojan Horse PWFA
 - Wakefield measurements in CLIC accelerating structure
 - Existing experiments will continue
 - Plasma Wakefield Acceleration with two bunches and pre-ionised plasma
 - Dielectric Wakefield Acceleration
 - Ultrafast Magnetic Switching
 - Smith-Purcell bunch profile diagnostic
 - THz-based Experiments
 - Next proposal review is in October 2012
- FACET continues to run 4-5 months/year until 2016

Thank you for your attention – for more, go to http://facet.slac.stanford.edu