

ERL Based Lepton-Hadron LH Colliders: eRHIC and LHeC

Frank Zimmermann Linac 2012 Conference, Tel Aviv 13 September 2012

Many thanks to:

Jose Abelleira, Mei Bai, Sergey Belomestnkyh, Ilan Ben-Zvi, Alex Bogacz, Oliver Brüning, Rama Calaga, Ed Ciapala, Friedrich Haug, Erk Jensen, John Jowett, Max Klein, Vladimir Litvinenko, Vadim Ptitsyn, Louis Rinolfi, Stephan Russenschuck, Daniel Schulte, Mike Sullivan, Rogelio Tomas, Davide Tomassini, Joachim Tückmantel, ...

colliding lepton & hadron beams

<mark>8e>>8</mark>h

minimum beta function and beam size limited by hourglass effect (large $\varepsilon_e \& \text{ large } \sigma_{z,h}!$); small crossing angle acceptable; little disruption linac-ring

<mark>ε_e≈ε_h</mark>

smaller beta function
and beam size possible;
head-on collision required;
significant disruption

geometric
overlap factor
$$H_{hg} = \frac{\sqrt{\pi}ze^{z^2} \operatorname{erfc}(z)}{S}$$
; $z \equiv 2 \frac{(\beta_e^*/\sigma_{z;h})(\varepsilon_e/\varepsilon_h)}{\sqrt{1+(\varepsilon_e/\varepsilon_h)^2}} S$; $S \equiv \sqrt{1+\frac{\sigma_{z,h}^2 \theta_c^2}{8\sigma^{*2}}}$

luminosity of linac-ring collider

hg

with round matched beams

hadron beam brightness

hadron IP β function

h, p

 ${\cal E}_h$

- small /*
- only one hadron beam
- new magnet technology Nb₃Sn

average ecurrent boosted by energy

recovery!

 \rightarrow ERL-ring collider

pinch

enhancement

(1.3 for e⁻, 0.3 e⁺)

two proposals for ERL-ring lepton-hadron colliders:

• LHeC based on the LHC at CERN

-7 TeV p or few TeV/nucleon heavy-ion beams

– adding a 60-GeV ERL with 6.4 mA current

eRHIC based on RHIC at BNL

– 250 (325) GeV polarized p's (& light ions) and
 100 (130)-GeV unpolarized heavy ions

-adding a 5-30 GeV ERL with 50-220 mA current

ERL-Ring LHeC

LHeC ERL layout

two 10-GeV SC linacs, 3-pass up, 3-pass down; 6.4 mA, 60 GeV e⁻'s collide w. LHC protons/ions

R&D for **LHeC SC linac in synergy with many future projects**: ILC, ν factory, *p*-driven plasma acceleration, and Higgs factory γγ collider

*Small Accelerator for Photon-Photon Higgs production using Recirculating Electrons

ERL-Ring eRHIC

two 2.45-GeV SC linacs, 6-pass up, 6-pass down; 50(220)-mA 5-30 GeV (un)polarized *e*⁻'s collide with RHIC polarized protons (250-325 GeV) or heavy ions (100-130 GeV / nucleon)

particle & nuclear physics program

LHeC

precision QCD electroweak physics high parton densities new physics at high energies

eRHIC

origin of the proton spin quantum phase space tomography of the nucleon strong color fields

collider parameters

collider parameters	eRHIC (ult.)		LHeC (ult).	
species	e	<i>p</i> , ¹⁹⁷ Au ⁹⁷⁺	e [±]	<i>p</i> , ²⁰⁸ Pb ⁸²⁺
b. energy(/nucleon) [GeV]	15 (30)	325, 130	60	7000, 2760
bunch spacing [ns]	18	18	25, 100	25, 100
bunch intensity(nucl.)[10 ⁹]	24	400, 600	1, 4	170, 25
beam current [A]	0.22 (.01)	3.3, 2.0	0.006	0.58, 0.006
rms bunch length [mm]	2	49	0.6	75.5
polarization [%]	80	70 , 0	90 (e ⁺ 0)	0, 0
norm. rms emittance [µm[5.8-57	0.2,0.2 CEC	50	3.75, 1.5
$\beta_{x,y}$ *[m]	0.05	0.05	0.12	0.1
σ _{x,y} * [μm]	6	6, 8	7	7
beam-beam parameter ξ_h		0.015		0.0001
lepton disruption D	52, 22		6	
CM energy [TeV]	140 (197)	88 (125)	1300	810
lum./nucl.[10 ³⁴ cm ⁻² s ⁻¹]	14 (4), 8.2 (2.1)		0.1 , 0.02	

eRHIC - special features

p polarization 55% now \rightarrow 70% high e⁻ current 50 mA polarized, 220 mA unpolarized small hadron beam emittances ~1/10 LHC achieved with novel Coherent Electron Cooling, space-charge compensation with other e⁻ beam staged installation steps in beam energy every few years

Coherent Electron Cooling - CEC

V.N. Litvinenko, , Y.S. Derbenev, PRL 102, 114801 (2009)

possible layout of CEC system for both RHIC hadron beams

Vladimir Litvinenko

SC linacs

(recirculating) SC linac parameters	eRHIC	LHeC
#linacs	2	2
length/linac [km]	0.2	1.0
energy gain / linac [GeV]	2.45	10.0
#acceleration passes	6	3
maximum final energy [GeV]	30	60
real estate gradient [MV/m]	12.45	10.0
energy gain / cavity [MeV]	20.4	20.8
cells / cavity ; cavities / linac	5;120	5 ; 480
RF frequency [MHz]	703.8	721
cavity length [m]	1.065	1.04
R/Q [linac Ω]	506	570
Q ₀ [10 ¹⁰]	4.0	2.5
power loss / cavity [W]	23.7	32
electrical cryopower per linac [MW]	2	10

linac features

LHeC linac 5x longer with 4x the energy gain (cavity filling factor 0.50 vs 0.64) eRHIC linac: no focusing LHeC linac: ~100 quadrupoles increase multi-pass BBU threshold LHeC linac quadrupole options: - electromagnets with indiv. powering - clustered electromagnets - permanent magnets

 Q_0 : a key parameter !

LHeC half cryo module - layout/specs

721.4 MHz RF, 5-cell cavity:

 λ = 41.557 cm

 $L_{c} = 5\lambda/2 = 103.89 \text{ cm}$

Grad = 20 MeV/m (20.8 MeV per cavity)

 ΔE = 80 MV per Half Cryo Module

Daniel Schulte

eRHIC: no cryo module; cavity "cryounit" easy addition or removal

preliminary layout of eRHIC cryounit

BNL3 Nb cavity

Sergey Belomestnykh

electrical power budgets

parameter	electrical power [MW]	
	eRHIC	LHeC
total main linac cryopower	4	21
RF microphonics control	5	24
extra RF for SR losses	20	23
extra-RF cryopower	0.3	2
e ⁻ injector	2.6	6
arc magnets	11	3
total	43	78

design constraints: SR loss < 10 MW (eRHIC); total el. power <100 MW (LHeC)

arcs

energy loss from synchrotron radiation

LHeC: ρ =764 m (E_{max} =60 GeV), ΔE_{tot} =2 GeV eRHIC: ρ =234 m (E_{max} =30 GeV), ΔE_{tot} =0.77 GeV

compensation with additional RF systems LHeC: 750 MV at 60 GeV (721 MHz) 675 MV at lower energy (1.44 GHz) eRHIC: 389 MV at 1.4 GHz at 27.55 GeV eRHIC: 6 passes, low-emittance near isochronous arc lattice building block: 35 m long with 7 dipoles & 9 quadrupoles

LHeC: 3 passes, flexible momentum compaction arc lattice building block: 52 m long with 2 (10) dipoles & 4 quadrupoles

LHeC flexible momentum compaction cell; tuned for small beam size (low energy) or low $\Delta \epsilon$ (high energy)

arc magnets

eRHIC dipole model

5 mm gap max. field 0.43 T (30 GeV)

LHeC dipole model

25 mm gap max. field 0.264 T (60 GeV)

ERL beam dynamics

- multi-pass beam break up
 - suppressed by cavity HOM damping & detuning
 - further suppression possible using correlated energy spread & arc chromaticity if needed (V. Litvinenko, PRST-AB 15, 074401 (2012))
- ion accumulation & ion instabilities
 - clearing gaps (circumference choice), excellent
 vacuum in warm (10⁻⁹ hPa) and cold regions (10⁻¹¹ hPa)
- others: resistive wall, surface roughness, CSR, Touschek effect

LHeC ERL Multi-Pass Beam-Break Up

beam stability requires both damping (Q~10⁵) & detuning $(\Delta f/f_{rms} \sim 0.1\%)$, 720 MHz

0X/X

injectors

source *e*⁻ beam parameters

parameter	eRHIC	LHeC
e ⁻ /bunch [10 ⁹]	5.6, 24	1.1
charge / bunch [nC]	0.9, 3.8	0.18
rms bunch length [mm]	2	3-30
bunch spacing [ns]	18	25
average current [mA]	50, 220	7
bunch peak current [A]	50, 200	7-70
polarization	85-90%, none	>90%

eRHIC polarized electron gun - candidates

large-sized GaAs cathode gun

Evgeni Tsentalovich

Gatling gun, combing beams from an array of 24 GaAs cathodes

Vladimir Litvinenko

beam quality from DC gun impact of non-Gaussian e⁻ beam shape on the hadron beam?

beam structure at ALICE with 230-kV

DC gun voltage:

(a)

(d)

(c)

250

15

Yuri Saveliev

injector & dump

eRHIC: 60-m 600 MeV injector linac operated in energy

50-mA beam is dumped at 10 MeV \rightarrow 500 kW power

LHeC: 500-MeV injector dumping 6.4-mA beam at 500 MeV → 3 MW ; 3 m³ water dump (0.5 m diameter and 8 m length) with 3 m x 3 m x 10 m shielding or energy recovery, decelerating 6.4-mA beam to 10 MeV → 64 kW

LHeC Linac-Ring e⁺ source

	SLC	CLIC (3 TeV)	ILC (RDR)	LHeC
Energy	1.19 GeV	2.86 GeV	5 GeV	60 GeV
e+/ bunch at IP	40 x 10 ⁹	3.72x10 ⁹	20 x 10 ⁹	2x10 ⁹
e+/ bunch before DR inj.	50 x 10 ⁹	7.6x10 ⁹	30 x 10 ⁹	N/A
Bunches / macropulse	1	312	2625	N/A
Macropulse repet. rate	120	50	5	CW
Bunches / second	120	15600	13125	20x10 ⁶
e ⁺ / second	0.06 x 10 ¹⁴	1.1 x 10 ¹⁴	3.9 x 10 ¹⁴	400 x 10 ¹⁴

LHeC e⁺ source

- recycle, re-collide, re-cool e⁺
- compact tri-ring scheme proposed for e⁺ cooling

 remaining e⁺ intensity produced by Compton ERL, Compton ring, or coherent pair production

interaction region

eRHIC IR layout

zero field on e⁻ trajectory , Q1 combined function magnet; only 1.9 W of soft radiation through IR (from 2.4 mT field); large crossing angle of 10 mrad:

~23-MV ~200-MHz (+harm) crab-cavities for hadron beam 1-MV 700-MHz crab-cavity for lepton beam

LHeC IR layout & SC IR quadrupoles

non-colliding proton beam

crab-cavity solution excluded ; head-on collision realized by **detector integrated dipole**: 0.3 T over +/- 9 m

48 kW of X-rays (1.8x10¹⁸ γ/s) critical energy 718 keV

beam-beam effects

e⁻ beam pinch & disruption

 e^{-} beam strongly focused by hadron beam → emittance growth by a factor of 2-3 in collision; effect minimized by re-matching exit line optics; aperture for deceleration must include these effects ; beam-beam kink instability - in eRHIC: cured by broad-band hadron-beam feedback, in LHeC: not expected to occur

e⁻ polarization

eRHIC: no e^{-} spin rotators; spin freely rotating in horizontal plane while beam passes through ERL; \rightarrow condition on final beam energy E=n 0.07216 GeV; **polarization loss due to finite energy spread = 5%** for 2x10⁻⁴ rms at 30 GeV

LHeC: spin is rotated into vertical direction prior to acceleration; **no depolarization**; full control of IP spin vector orientation by **RHIC type spin-rotator system at high energy**; e.g. 4 x 15 m long helical dipoles with fields 0.46 T and 0.37 T (\rightarrow **0.3 MW SR**)

eRHIC R&D items & possible time line

50-mA CW polarized e⁻ source

Coherent Electron Cooling POP experiment (with JLAB, Daresbury, BINP, and Tech-X)

SRF ERL technology on BNL's existing R&D ERL

RF cryostat, small-gap magnets, arc vacuum chambers

ERL-Test Facility (TF) at CERN

SCL2

Rama Calaga

ERL-TF (300 MeV) – Layout

Two passes 'up' + Two passes 'down'

could the LHeC TF later become the LHeC ERL injector ERL?

Rama Calaga & Erk Jensen

thank you for your attention!

for more details:

- LHeC web site <u>http://cern.ch/lhec</u>
- LHeC CDR, J.Phys.G:Nucl.Part.Phys. 39, 075001 (2012)
- eRHIC web site <u>http://www.bnl.gov/cad/eRhic</u>
- ICFA Beam Dynamics Newsletter No. 58, special issue on future electron-hadron colliders, August 2012