Fermilab 1.3 GHz Superconducting RF Cavity and Cryomodule Program for Future Linacs

Camille M. Ginsburg (FNAL)
September 10, 2012
Fermilab 1.3 GHz SRF Overview

- International Linear Collider motivated substantial infrastructure development and progress
- Project X builds on this
 - 3 GeV CW linac requires high Q_0 at gradients $15 < E_{acc} < 20$ MV/m; studies use 1.3 GHz cavities
 - 3-8 GeV pulsed section is 1.3 GHz, ILC cavities at $E_{acc} \sim 25$ MV/m
- Cavity preparation and qualification
 - Cavity inspection, surface processing, clean assembly, low-power bare cavity tests and pulsed high-power dressed cavity tests
 - Peripheral hardware, e.g., tuners and couplers, under development
- Cryomodule assembly
 - Well performing cavities assembled into cryomodules for pulsed high-power tests, and will be tested with beam.
- Status, accomplishments and plans
ANL/Fermilab 1.3 GHz cavity proc’ing infrastructure

- Electropolishing
- Clean assembly
- High-pressure rinse
- Ultrasonic rinse
- Tumbling machine
- Vacuum furnace
- New R&D EP tool at FNAL
Fermilab test and assembly infrastructure

- VTS1
- cavity tuning machine
- HTS
- vertical test
- VTS2 Dewar (=VTS3)
- cavity inspection (Kyoto/KEK)
- Class-10 string assembly
- cold mass assembly
- final cryomodule assembly
International cavities from established vendors using established processes. 2nd pass yield for >35 MV/m for integrated sample is (57 ± 8)% for 2010-2012 alone is (69 ± 13)%.

C.M. Ginsburg et al., KILC12, Daegu, S. Korea

http://ilcagenda.linearcollider.org/contributionDisplay.py?contribId=85&sessionId=36&confId=5414
ILC 1.3 GHz Cavity Performance Benchmark

International cavities from established vendors using established processes
2nd pass yield for >25 MV/m for integrated sample is (80+7)%
for 2010-2012 alone is (92+7)%
Fermilab stewardship for 80 ILC cavities plus 1-cell prototypes

Cavity vendor qualification
- AES (done), Niowave-Roark, PAVAC (ongoing)

Excellent performance achieved
- Strong collaboration with JLab, Cornell, ...
- Infrastructure development
1.3 GHz cryomodule assembly

CM1 (8-cavity + dummy magnet)
- Assembled at Fermilab from a DESY “kit” which included all parts from DESY and INFN
- Was operated at NML

CM2 string (8-cavity + magnet)
- Cavities were processed and vertically tested at JLab
- Dressed and horizontally tested at FNAL
- Assembled and leak checked at FNAL
- Good chance for first ILC spec CM in US

CM3 is next
Acknowledgements and Advertisements

• Many thanks to our Fermilab, national, and international collaborators for their hard work and excellent contributions to the cavity and cryomodule development presented here.

• For this presentation, material was provided by M. P. Kelly (ANL), R. Geng (JLab), T. Arkan, M.S. Champion, L.D. Cooley, C. Cooper, A. Hocker, T. Khabiboulline, J.P. Ozelis, T. Peterson, A. Rowe, D. Sergatskov, A. Sukhanov, V. Yakovlev (FNAL).

• We are greatly indebted to the technical staff in Technical Division who make everything work.

• Please see the following related talks/posters
 - V. Yakovlev MO1A03
 - A. Grassellino MOPB078
 - S. Henderson TU1A01
 - A. Yamamoto TH3A01