

ADVANCES IN BEAM TESTS OF DIELECTRIC BASED ACCELERATING

A.Kanareykin¹, Antipov^{1,2}, C.Jing^{1,2}, V.Yakimenko³, J.Butler¹, W.Gai²

> Euclid TechLabs LLC, Gaithersburg, MD Argonne National Laboratory, Argonne, IL ATF, Brookhaven National Laboratory, Upton, NY

We present here three experiments carried out at the ATF, AWA and FACET – a direct wakefield acceleration and high gradient generation.

- High gradient material test with the Ka-band diamond based structure.
- A demonstration of a direct wakefield acceleration with the THz diamond based structure.

Motivation

 $\sigma_r = \left(\frac{\varepsilon_N}{\rho}\right)$

- Collinear acceleration
- Two-beam acceleration (CLIC-type)
- Externally driven
- Structure:
 - Type of ceramics: loss, multipactor, thermal management, fabrication
 - Power extraction
 - Coupling schemes
 - Tuning
 - HOM suppression
- Beam:
 - Phase space manipulation
 - Bunch trains
 - Beam shaping for transformer ratio
 - Beam transport and BBU studies

Our work across the spectrum and applications

- 7.8GHz power extractor (40MW)
 - 100MV/m gradient demonstration
 - Enhanced Transformer Ratio: 3.4
 - Tunable DLA structure
 - 26GHz power extractor
 - Diamond breakdown experiment (300MV/m)

Diamond

- $\epsilon = 5.7$; tan $\delta < 5.10^{-5}$ at 30 145 GHz
- High breakdown threshold (DC~2GV/m)
- SEE reduction by surface dehydrogenation
- High thermal conductivity = 25 W·cm⁻¹·K⁻¹ (5xCopper)
- Hardness, low coefficient of friction
- Low thermal expansion
- Radiation resistant

High Grad. Breakdown Study of A Diamond Slab Structure @ ANL/ AWA

Our goal is to perform first WF experiment with Diamond-based DLA, test for breakdown

Bunch length	2~2.5 mm
Beam gap	4.0 mm
D thickness	1.2 mm
width	8 mm
length	5.0 mm

*AWA facility can generate up to 100nC beam with $\sigma_z = 2.5$ mm (14 MeV)

Structure is short, TM_{110} – based Wake is a single mode at ~ 26 GHz Q = 2800 (\rightarrow decay time τ ~35ns)

Diamond test at the AWA

Frequency	24.81 GHz
Gradient (AWA	60 MV/m
70 nC)	
Beam gap	4 mm
Diamond	1.2 mm
thickness	
Structure width	8 mm
Diamond length	4 mm
Dielectric	5.7; $tan(\delta) =$
constant	10-4
Q, quality factor	2800, т ~ 35ns
r/Q	11.4 kΩ/m

Diamonds (E6) ... with a groove

Single crystal CVD diamond (E6) Groove: 20um (wide) x 200um (deep) Field enhancement ~ $\varepsilon \cdot E \approx 300 \text{ MV/m}$ AWA transported 72nC through the structure

Upper half of the diamond resonator

High Gradient Beam Test

- 72nC (σ_z =2.5mm) went through which is *eqv*. to <u>~300 MV/m</u> gradient on axis for decay time <u> τ ~ 35ns</u>.
- Preliminary examination shows No evidence of breakdowns during the beam test. More examinations or additional test will be carried out.

Experimental drive + witness visualization

Spectrometer measurement

Experiment at ATF: Wakefields and the Structure

S. Antipov et. al. Appl. Phys. Lett. 100, 132910 (2012)

Wakefield Mapping of a Diamond Slab Structure at BNL/ ATF

- 1st wakefield mapping experiment in THz regime (June 2011).
- 1st wakefield acceleration observed in THz regime.
- S. Antipov, et al, App. Phy. Lett. March 2012.

Energy chirp compensation

Energy chirp correction demonstrated ATF

Limited by spectrometer

resolution ss housing tubes Beat Hubes (15.5) (Gold sputtered) Sizes (ID / OD): 1", 200 x 330 µ 1", 300 x 400 µ 2", 400 x 550 µ

Linear chirp correction / energy

S. Antipov et al. Phys. Rev. Lett. 108, 144801 (2012)

- Experimentally demonstrated direct wakefield acceleration using diamond loaded 0.25 THz planar structure. A THz diamond based structures tested at BNL/ATF showed no evidence of polycrystalline structure deformation
- Diamond samples have been tested at Ka-band with 300 MV/m wakefield 35 ns pulses - no evidence of polycrystalline structure deformation