

J. Galambos, A. Aleksandrov, M. Plum, A. Shishlo (SNS), E. Laface (ESS), V. Lebedev (FNAL)

LINAC 2012, Sept. 10 2012, Tel Aviv Israel

ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.

den entrenen

The Spallation Neutron Source (SNS) Superconducting RF Linac

- SNS has a superconducting RF linac for H- acceleration
- Designed to accelerate H⁻ from 186 MeV to 1 GeV
- High power linac (MW)

SNS SCL Linac Losses: The Expectation

"Accelerator physics model of expected beam loss along the SNS mal operation" Did the beam have

N. any known enemies?

"As for the superconducting linac much larger than the nominal bear stripping calculations give a negli

he

other hand, one should be very cautious with our expectations as there is no experience with superconducting proton linacs up to now."

SNS design stage: The Expectation

Multi particle simulations did not predict beam loss

Maximum extent was far from aperture

Nature of the Beam Loss

• The activation pattern: local hot spots are in warm sections between cryomodules

SCL Residual Activation Global Distribution

Activation in warm sections along the SCL

• Remarkably uniform!

SCL Activation: The History

Run

- Even at low beam power, we began to measure SCL activation from beam loss
 - Does not limit operational power

How much beam is really lost??

 Implication is that not much beam is lost: ~ 5x10⁻⁵ throughout the superconducting linac

How Is Beam Getting Lost ???

- Possible beam
 - Longitudinal halo
 - Transverse halo from the source
 - Transverse mis-match
 - $H^{-} stripping$
 - Non-linear fields

Longitudinal Halo Impact on Beam Loss

- We have measured a long (30-40 deg) longitudinal tail at the SCL entrance
- Loss is sensitive to warm linac RF setup

Courtesy Y. Zhang

Transverse halo: MEBT scraping

• 2 horizontal MEBT scrapers at SNS

- Reduces lattice transition and ring injection dump losses no uniform reduction throughout the SCL
- Effectiveness in loss reduction varies from source to source

Courtesy A. Aleksandrov

H⁻ Stripping Loss Contribution

• Magnetic stripping, RF field stripping, calculated to have small effect

Residual gas stripping:

Measured beam loss sensitivity to upstream vacuum level:

Minimal impact on beam loss from residual gas stripping

A clue: reduced transverse focusing lowers beam loss !

- Simple estimates of loss rates are consistent with measured loss levels
 - Observed at CERN in 1980's
- Predicted loss magnitude is right order for SNS

IBSt really seems to make sense, but ... Доверяй, но проверяй (trust, but verify)

So, let's put a proton beam in the SNS SCL

- Tried to convert an H⁻ source to an H⁺ source: no luck
- Use an insertable stripper foil upstream of the DTL
 - Use 10 independent focusing power supplies in the transport from RFQ to (permanent magnet) DTL for transverse match
 - Move RF phases 180 degrees

Proton Beam at the SNS Linac

Swap H⁻ and proton Twiss parameters here

5 μg/cm² carbon foil will strip >

H-

- 0.6 keV kinetic energy loss for pro
- 12 % emittance growth expected fr
- ~50 μ s pulse without damaging the

Measured Twiss Parameters at the End of SCL for H- and Protons

wire position, mm

Measured Proton Transmission to SCL

Proton transmission is not 100%

It is peak current dependent

We lose beam in MEBT-DTL

Transmission to SCL, 2011.09.25

Measured SCL Losses Protons vs. H⁻

30 mA, production lattice (weak focusing)

• Significant reduction in loss for the proton beam

Measured SCL Losses Protons vs. H⁻

30 mA, design lattice (strong focusing)

 Even more significant reduction in loss for the proton beam

SCL Losses vs. Beam Current

- H- normalized loss shows linear dependence on current
 - Consistent with IBSt scaling
- Proton normalized loss is independent on intensity

A New H⁻ Beam Loss Mechanism is Identified

- IBSt seems to be the primary contributor to beam loss in the SNS SCL
- This loss med power ion acc
 - Situation is g
- Direction for a
 - Reduce trans
 beam even b

d in future high

attempt to make the

Add more transverse scrapers

Thanks!

Backup

Upstream Halo Scraping Impact Loss at Isolated Locations

 The effectiveness of the scrapers varies with the ion source and the machine lattice

MEBT Sizes: Production vs. Optimized

Prediction: Horizontal beam size at the foil will change from about 1.7 mm to 2.6 mm due to the QH01 field change from 34.5 to 2.5 T/m. The vertical size will be almost the same.
 Not a problem: the foil is big enough to accommodate this!