laboratoire d'optique appliquée

Laser Plasma Accelerators

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

Victor Malka

Laboratoire d'Optique Appliquée

ENSTA ParisTech – Ecole Polytechnique – CNRS PALAISEAU, France

victor.malka@ensta.fr

http://loa.ensta.fr/

loa

UMR 7639

Introduction : context and motivations

Colliding laser pulses regime

Compton scattering X ray beam

Conclusion and perspectives

- F

Introduction : context and motivations

Colliding laser pulses regime

Compton scattering X ray beam

Conclusion and perspectives

Accelerators : One century of exploration of the infinitively small

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

The development of state of the art accelerators for HEP has lead to : research in other field of science (light source, spallation neutron sources...) industrial accelerators (cancer therapy, ion implant., electron cutting&welding...)

Application	Total systems (2007) approx.	System sold/yr	Sales/yr (M\$)	System price (M\$)
Cancer Therapy	9100	500	1800	2.0 - 5.0
Ion Implantation	9500	500	1400	1.5 - 2.5
Electron cutting and welding	4500	100	150	0.5 - 2.5
Electron beam and X rays irradiators	2000	75	130	0.2 - 8.0
Radio-isotope production (incl. PET)	550	50	70	I.0 - 30
Non destructive testing (incl. Security)	650	100	70	0.3 - 2.0
Ion beam analysis (incl.AMS)	200	25	30	0.4 - 1.5
Neutron generators (incl. sealed tubes)	1000	50	30	0.1 - 3.0
Total	27500	1400	3680	

Total accelerators sales increasing more than 10% per year

Compactness of Laser Plasma Accelerators

Plasma Cavity

RF Cavity

I m => 100 MeV Gain Electric field < 100 MV/m

V. Malka et al., Science 298, 1596 (2002)

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

How to excite relativistic plasma waves ?

The laser wake field : broad resonance condition $\tau_{laser} \sim T_p/2$ => short laser pulse

electron density perturbation and longitudinal wakefield

T. Tajima and J. Dawson, PRL **43**, 267 (1979)

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

http://loa.ensta.fr/

In plasma wave :

E field is not homogenous
Volume is phase space is conserved
very small initial volume

=> very challenging with conventional accelerator

Introduction : context and motivations

Colliding laser pulses regime

Compton scattering X ray beam

Conclusion and perspectives

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

Colliding Laser Pulses Scheme

The first laser beam creates the accelerating structure, the second one is used to heat electrons

Theory : E. Esarey *et al.*, PRL **79**, 2682 (1997), H. Kotaki *et al.*, PoP **11** (2004) Experiments : J. Faure *et al.*, Nature **444**, 737 (2006)

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

http://loa.ensta.fr/

Set-up for colliding pulses experiment

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

The colliding of two laser pulses scheme

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

Towards a Stable Laser Plasma Accelerators

Series of 28 consecutive shots with : $a_0=1.5$, $a_1=0.4$, $n_e=5.7 \times 10^{18}$ cm⁻³

http://loa.ensta.fr/

UMR 7639

accelerating distance \longleftrightarrow

J. Faure et al., Nature 444, 737 (2006)

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

http://loa.ensta.fr/

UMR 7639

Tunability of Laser Plasma Accelerators : electrons energy

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

http://loa.ensta.fr/

Tunability of Plasma Accelerators: charge & energy spread

<u>Charge</u> : controlling electrons heating processes => smaller $a_{inj.}$ means less heating and less trapping <u>Energy spread</u> : Decreasing the phase space volume V_{trap} of trapped electrons by reducing $a_{inj.}$ or by reducing cT/λ_p by changing n_e (i.e λ_p)

Evolution of injection volume with a_1 for $a_0 = 2$, $n_e = 7 \times 10^{18} \text{cm}^{-3}$. Fields are computed for the ID case and the beatwave separatrix corresponds to the circular polarization case.

In practice, energy spread and charge are correlated: Decreasing a_1 decreases the charge but also V_{trap} , and in consequence the energy spread

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

increasing the plasma density

loa

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

Tuning charge & energy spread with the inj. laser intensity

Charge from 60 pC to 5 pC, ΔE from 20 to 5 MeV

C. Rechatin et al., Phys. Rev. Lett. **102**, 164801 (2009)

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

http://loa.ensta.fr/

Tuning charge & energy spread with the inj. laser intensity

C. Rechatin et al., New Journal of Physics **II** (2009)

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

http://loa.ensta.fr/

I % energy spread has been measured

Resolution < 1 % expected

In collaboration with A. Specka, H.Videau LLR, CNRS, Ecole Polytechnique

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

1% relative energy spread

C. Rechatin et al., Phys. Rev. Lett. **102**, 194804 (2009)

1.5 fs RMS duration : Peak current of 4 kA

Gaussian pulse shape Measured e-beam : Charge Energy Divergence **Bunch duration** Peak wavelength Peak intensity

Spectral features Peak at 3 μ m Coherent

1.5 fs RMS duration : Peak current of 4 kA

O. Lundh et al., Nature Physics, 7 (2011)

Introduction : context and motivations

Colliding laser pulses regime

Compton scattering X ray beam

Conclusion and perspectives

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

Inverse Compton Scattering

Doppler upshift : high energy photons with modest electrons energy : $\omega_x = 4\gamma^2 \omega_0$

For example : 20 MeV electrons can produce 10 keV photons 200 MeV electrons can produce 1 MeV photons

The number of photons depends on the electron charge N_e and a_0^2 : $N_x \propto a_0^2 \times N_e$

Duration (fs), source size (μ m) = electron bunch length and electron beam size

Spectral bandwidth : $\Delta E/E \propto 2\Delta \gamma/\gamma, \gamma^2 \Delta \theta^2$

Inverse Compton Scattering : New scheme

A single laser pulse

- A plasma mirror reflects the laser beam
- The back reflected laser collides with the accelerated electrons
- No alignement : the laser and the electron beams naturally overlap

Save the laser energy !

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

UMR 7639

Inverse Compton Scattering : Experimental set-up

Inverse Compton Scattering : Experimental results

Inverse Compton Scattering : Compton Spectra

- About 10⁸ ph/tir, a few 10⁴ ph/shot/0.1%BW @ 100 keV
- Broad electron spectrum => broad X ray spectra
- Brigthness: 10²¹ ph/s/mm²/mrad²/0.1%BW @100 keV

K.Ta Phuoc et al., Nature Photonics 6 (2012)

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

http://loa.ensta.fr/

loa

UMR 7639

Introduction : context and motivations

Colliding laser pulses regime

Compton scattering X ray beam

Conclusion and perspectives

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

http://loa.ensta.fr/

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

http://loa.ensta.fr/

loa

UMR 7639

Some examples of applications : radiotherapy

http://loa.ensta.fr/

UMR 7639

Some examples of applications : radiotherapy

simulations of prostate cancer with 7 irradiation beams

250 MeV electrons

X rays IMRT

Difference

A comparison of dose deposition with 6 MeV X ray an improvement of the quality of a clinically approved prostate treatment plan. While the target coverage is the same or even slightly better for 250 MeV electrons compared to photons the dose sparing of sensitive structures is improved (up to 19%).

T. Fuchs et al. Phys. Med. Biol. 54, 3315-3328 (2009)

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

http://loa.ensta.fr/

Some examples of applications : radiography

Non destructive dense matter inspection

High resolution radiography of dense object with a low divergence, point-like electron source

Some examples of applications : radiography results

Cut of the object in 3D Spherical hollow object in tungsten with sinusoidal structures etched on the inner part. 400 μm γ source size 2005 50 μm γ source size 2010

Y. Glinec *et al.*, PRL **94**, 025003 (2005) A. Ben-Ismail *et al.*, Nucl. Instr. and Meth.A **629** (2010) A. Ben-Ismail *et al.*, App. Phys. Lett. **98**, 264101 (2011)

Conclusions (1)

- Good beam quality & Monoenergetic dE/E down to 1 % Beam is very stable Energy is tunable: up to 400 MeV Charge is tunable: I to tens of pCEnergy spread is tunable: I to 10 % Ultra short e-bunch : 1,5 fs rms Low divergence : 2 mrad
 - Low emittance¹⁻³ : π .mm.mrad

¹S. Fritzler *et al.*, Phys. Rev. Lett. **92**, 165006 (2004), ²C. M. S. Sears *et al.*, PRSTAB **13**, 092803 (2010) ³E. Brunetti *et al.*, Phys. Rev. Lett. **105**, 215007 (2010)

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

- Physics point of view : many new aspects of the interaction have been revealed :
- Colliding pulses injection
- Heating processes with crossed polarized lasers¹
- Inhibited plasma waves effect
- Beam loading effect : optimum current of a few kA
- Single injection^{2,3}
- Double injection³

¹C. Rechatin *et al.*, NJP **11**, 013011 (2009), ²S. P. D. Mangles *et al.*, Phys. Rev. Lett. **96**, 215001 (2006) ³Y. Glinec *et al.*, Phys. Rev. Lett. **98**, 194801 (2007)

Results extremely important for :

Designing future accelerators Compact X ray source (Thomson, Compton, Betatron, or FEL) Applications (chemistry, radiotherapy, medicine, material science, ultrafast phenomena studies, etc...)

First X rays betatron contrast images

S. Fourmaux et al., Opt. Lett. 36, 13 (2011)

S. Kneip *et al.*, Appl. Phys. Lett. 99, 093701 (2011)

Courtesy of K. Krushelnick

V. Malka et al., Nature Physics 4 (2008)

A. Ben Ismail, S. Corde, J. Faure, S. Fritzler, Y. Glinec, A. Lifshitz, J. Lim, O. Lundh, C. Rechatin, Kim Ta Phuoc, A. Rousse, S. Sebban, and C. Thaury from LOA

E. Lefebvre and X. Davoine from CEA/DAM

CARE/FP6-Euroleap/FP6-Accel1/ANR-PARIS/ERC contracts

Laser plasma accelerator is a wonderful tool for Science, for Societal application and for Academic Activities

loa

XXVI Linear Accelerator Conference, Tel-Aviv, Israel, September 9-14 (2012)

