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SARAF Accelerator (2003 design view) 

PSM – Prototype Superconducting Module 

B. Bazak et al., linac 2010 

Phase I of SARAF includes (Ion source, RFQ and one cryomodule 

housing 6 HWRs 176 MHz ) delivering: 

 - 3.6 MeV 1mA p beam 

 - 4.7 MeV low duty cycle 0.3 mA d beam 

SARAF Phase II CW linac is planned to produce: 

 - variable energy (5-40) MeV p&d 

 - beam currents (0.04-5) mA 
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SARAF Accelerator (2003 design view) 

PSM – Prototype Superconducting Module 
Phase-I working 

B. Bazak et al., linac 2010 

Phase I of SARAF includes (Ion source, RFQ and one cryomodule 

housing 6 HWRs 176 MHz ) delivering: 

 - 3.6 MeV 1mA p beam 

 - 4.7 MeV low duty cycle 0.3 mA d beam 

SARAF Phase II CW linac is planned to produce: 

 - variable energy (5-40) MeV p&d 

 - beam currents (0.04-5) mA 
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Outline: SARAF Phase II conceptual study 

Two linac options: 176 MHz HWR & 109 MHz QWR lattices downstream a 

20 keV/u - 1.3 MeV/u RFQ. Both options were studied for Phase II: 

• Design of CW RFQs according to engineering and beam dynamics 

guidelines 

• Matching the LEBT beam to the RFQ 

• MEBT design 

• SC cavity main EM parameters 

• EM optimization of both QWRs and HWRs 

• Engineering and beam physics design of the linac and its cryomodules 

• Detailed beam dynamics simulations with realistic fields and machine 

errors. 
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Design of CW RFQs guidelines 

• Reliable CW protons and deuterons operation 

• Beam formation with extremely low longitudinal halo 

• Moderate peak fields to avoid any possible breakdowns and 

avoid long conditioning of the resonator. In particular, the peak 

electric fields should be below 1.8EK (EK=Kilpatrick criterion) 

• High acceleration efficiency (>97%) for 5 mA 

• No transverse rms emittance growth through the RFQ  

60.625-MHz CW  

RFQ designed and built 

for the National User Facility: 

Argonne Tandem Linac Accelerator System 
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The 4 vanes 176 & 109 MHz CW RFQ 

4-vane structure was chosen to reduce RF power as compared to 

4-rod or even 4-vane structure with “windows” 
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176 MHz CW RFQ: Beam 

Dynamics Optimized Design 

Beam Proton Deuteron 

Input transverse emittance, 
rms, norm, mm·mrad 

0.25 0.25 

Input Twiss α  0.21 0.22 

Input Twiss β, cm/rad  3.4 3.1 

Transmission, % 99.7 99.9 

Output longitudinal emittance, 
rms,  keV/u·deg 

36.6 36.3 

Transverse rms emittance 
growth, % 

0 0 

Transverse 99% emittance 
growth, % 

10 13 

Particle loss inside the RFQ 3·10-3 1·10-3 

Two Important Design Features 

 Approaches 100% transmission 

 Input matcher to reduce emittance growth 
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LEBT with RFQ original 6 cell input matcher: α ~ 1.5 

LEBT with RFQ special 15 cell input matcher: α ~ 0.25 

-- step function 

-- smooth function 

A Smooth Two-Step Input Matcher 
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MEBT primary functions 
• Match either a proton or a deuteron beam into the 6D acceptance 

of the SC linac; 

• Avoid emittance growth and formation of beam halo; 

• Provide space for beam diagnostics and cold trap 

 

Matching of the RFQ beam to the SC acceptance is not a trivial task 

 

 
• The available accelerating 

gradient of the SC 

structures is appreciably 

higher than that of the 

RFQs; 

• The MEBT forms a radial 

beam for injection into the 

SC linac;  
2 m 
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• Aperture diameter 30 mm 

• Voltage – up to 160 kV 

• RF power 3kW 

176 MHz Room Temperature Buncher 

10 
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SC cavity main EM parameters Selection 

• Based on the 

demonstrated 

performance of TEM-

class cavities at ANL. 

• Weighted toward 

maintaining EPEAK at 

or below 36 MV/m. 

• These parameters were demonstrated in operation for the past 3 years. Off-line cold 

test of  NEW 72 MHz cavities demonstrated >70 MV/m in all 4 tested cavities. 

[M.P. Kelly et al, MOPB073 

these proceedings] 
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EM optimization of HWRs 

 Three steps optimization to the Race-Track center conductor 

design to reduce magnetic field and the transverse beam 

asymmetry : 

•  Elliptical aperture.    

•  Intermediate round loft.  

•  Change the geometry  to “donut” shape.  



Soreq 

13 

  Elliptical aperture 

The required elliptical aperture is 33-36 mm for 

the low-β and 36-40 mm for the high-β  

The elliptical aperture reduces the quadrupole effect 

caused by the asymmetric geometry 

[B. Mustapha et 

al, HIAT-2012]  
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Intermediate round loft 

• The intermediate round loft reduces the 

peak magnetic field  

Replacing the Race Track with a donut-shaped  

• The donut-shaped cavity has a slightly 

higher E-peak, a much lower B-peak, 

and a higher shunt impedance. 

 to donut shape 

HWR EM fields optimization 

[B. Mustapha et al, IPAC-2012] 

Change the geometry 

[CST MWS] 
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The final donut shape CST EM fields 
CST EM Fields Donut-Shaped vs. Race Track 

design: Shunt Impedance 

• The Donut-Shaped has a 32% higher shunt impedance due to the 

narrower acceleration gaps (a better transient time factor ) 

• The donut-shaped cavity is capable of delivering 2.1 MV at 36 

MV/m and 43 mT or 3.4 MV at 59 MV/m and 70 mT 
 

CST EM Fields 
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Final designs of the 109-MHz QWRs 

Geometries and dimensions for  the low-β (left) and the high-β (right) cavities 

The steering correction is achieved by introducing a drift tube face tilt angle to 

compensate the QWR non-symmetric magnetic component. 
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Physics design of high-intensity linacs 

• The transverse and longitudinal wave numbers, T0 and L0, for 

zero beam current must change adiabatically along the linac 

• This feature minimizes the potential for mismatches and helps to 

assure a current-independent lattice and its tune. 

• The wave numbers of particle oscillations are expressed as T0= 

T0/Lf, l0= l0/Lf, where T0 and L0 are the zero-current transverse 

and longitudinal phase advances per focusing period of length Lf . 

• An adiabatic change of the real-estate accelerating gradients and 

focusing fields is required to fulfill these conditions. Fulfillment of 

these conditions results in a current-independent tune of the SC 

linac section. 

• In the proposed lattice design for both frequency options we follow 

this concept very closely with a focus on minimizing the number of 

cavities and solenoids for cost efficiency.  
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176 MHz Cryomodule Design 

• First low-b cryomodule: BPM, Solenoid, 

Cavity per focusing period 

• High-b cryomodule: 3 focusing periods, 2 

HWRs each, and 1 HWR in the 4th period. 

 

18 

[Z. Conway et al, 

TUPB068 these 

proceedings] 
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The 109 MHz SC modules 

19 low-β (top) and high-β (bottom) lattice design 
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109 MHz Linac vs. 176 MHz linac  

• 109 MHz requires one cryomodule less 

but a new RFQ 

• Apertures can be made larger 

• Higher shunt impedance 

• Requires new RF system 

• 176 MHz is a more familiar frequency; the 

RF system can be made domestically 

• In terms of beam dynamics they are very 

similar 

20 
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176 MHz Lattice Beam Dynamics & Errors Study 
• A 5 mA proton/deuteron beam reaches 40 MeV with 28 HWRs 

• The normalized rms emittance growth for a typical run, is a few percent 

• No losses were found in 100 runs with errors and 100k macro particles 

21 

Centroid motion along the linac before (Red) and after (Blue) correction. 

The correction uses only 2 correctors and 2 monitors per cryomodule. 

Applied Errors: 

 

Cavity & Solenoid 

Misalignments: 500 μ 

 

Cavity Phase: 0.5 deg 

 

Cavity Field: 0.5 % 
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INTEGRATING  SARAF PSM IN SARAF PHASE II LATTICE 

• The existing SARAF Phase-I prototype SC module (PSM) can be 

used as a second low-β cryostat in Phase II. 

• The PSM cavities were set at 600 kV, 70% of their original design 

voltage. 

• The result is an additional 5 MeV energy gain for deuteron 

• 3 MeV are gained at the PSM 

• 2 additional MeV are the result of a better velocity matching 

downstream of the PSM  
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Accelerator Layout with the PSM 

 The ion source and LEBT 

are in the original position. 

 New RFQ, MEBT, and 

superconducting linac. 

 PSM included. 

23 
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  Analysis of the PSM coupler 

• RF thermal co-simulation analysis of the PSM HWR coupler cold window 

temperature rise during 4kW beam operation is essential for integrating the 

PSM in Phase II 

24 
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Summary 

• Two linac options based on 109 MHz QWRs and 176 MHz 

HWRs capable to deliver 5 mA, 40 MeV proton and 

deuteron beams have been studied. 

• Extensive end-to-end beam dynamics simulations iterated 

with the engineering design show that both options can hold 

the hands-on maintenance criterion which is vital for a high 

intensity machine. 

• As there are only slight differences between both options, 

the SARAF project adopted the 176 MHz HWR linac since it 

will be a smooth transition from phase I.  

• Furthermore, with some modifications, the current SARAF 

PSM can be included in the Phase II lattice  
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