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Abstract
In this paper, we present two different ideas that may be

useful for design and simulation of (superconducting) radio
frequency cavities.
To obtain longitudinal and transverse voltages resp.

shunt impedances in cavities without rotational symmetry,
one or two integration paths are often used to get an ap-
proximate difference relation for the transverse voltage of
higher order modes (HOMs). The presented approach uses
a multipole decomposition that is valid in vicinity of the
central axis to compute voltage multipole decomposition
directly for paths of arbitrary number and position.
Elliptical cavities have been a standard in SRF linac

technology for 30 years. We present another approach to
base cell geometry based on Bezier splines that is much
more flexible in terms of optimization, while reaching
equal performance levels.

POLAR PATH INTEGRAL ANALYSIS
In the following section, the longitudinal and transverse

voltages are expressed using a multipole decomposition.
By pseudo-inversion of the resulting equation system (sim-
ilar to polynomial interpolation), one can calculate the cor-
responding coefficients directly from an arbitrary number
and position of integration paths.
This method also allows to check a) if the position and

number of paths is appropriate to extract the desired coef-
ficients, b) if there is any “noise” in the voltage paths that
stem from computational errors or from a too large distance
of the path from the central axis.

Signed ffective Voltages
The effective longitudinal and transverse acceleration

voltages can be written as complex Fourier integrals

Ṽ‖ =

∫
Es(s) exp (ikβs) ds ∈ C, (1)

�̃V⊥ =
1

q

∫
�F⊥(s) exp (ikβs) ds ∈ C

2, (2)

where �F⊥ is the total transverse Lorentz force, and Es is
the longitudinal electric field at the path position s. The
complex angle Ψ0 = arg(Ṽ‖) corresponds to an optimal
acceleration phase, and its magnitude to the acceleration
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voltage for this phase (see [6] for a special derivation of
this relation with a fixed Ψ0 = 0).
For each mode, the phases of Ṽ‖ on all paths are equal up

to an additional shift by π, corresponding to a sign change
(deceleration). Using a fixed phaseΨ0 that is one of the two
possible optimal phases, we may define a real acceleration
voltage for the optimal phase by

V‖ := Ṽ‖ · e
−iΨ0 ∈ R. (3)

and, using the Panofsky-Wenzel theorem, a corresponding
real transverse voltage may be defined by

∂

∂t
�̃V⊥ = iωṼ⊥ = −�∇⊥Ṽ‖ (4)

�V⊥ =

(
Vx

Vy

)
= −i�̃V⊥ · e−iΨ0 ∈ R

2. (5)
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Figure 1: Reconstruction of the transverse (arrows) and
longitudinal (isolines) voltages in the beam area with con-
tributions from different multipole components. The cor-
responding coefficients were computed from voltages on
circularly arranged integration paths at 5mm offset from
beam axis for an eigenmode of the BERLinPro main linac
cavity. The red square marks the transverse forceless point
z0 which deviates from the axis by more than 1mm.

Holomorphic Multipole Expansion
By using a complex analytic multipole decomposition

F (z) ≈
∑
p

cp zp, (6)

where z = x+iy = reiφ is the transverse position of the in-
tegration path, and cp = ap+ibp are complex numbers that
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describe the magnitude and orientation of different multi-
poles, the signed longitudinal and signed transverse volt-
ages can be expressed as

V‖(z) := �F (z) =
∑
p

rp[bp cos(pφ) + ap sin(pφ)] (7)

⇒ X(z) :=
d

dz
F = −ω(Vy + iVx) =

∑
p

pcp zp−1 (8)

Multiple Path Equation System
Assuming there are N numerical integration paths at

transverse positions zn set up for the computation, they can
be combined into a vector thus summarizing the problem
into two matrix equations.

�V‖ = �

⎡
⎢⎣M

⎛
⎜⎝

c0
...

cP−1

⎞
⎟⎠
⎤
⎥⎦ , �X = M

⎛
⎜⎝

1c1
...

PcP

⎞
⎟⎠ (9)

whereM denotes theN × P Vandermonde matrix defined
byMn,p = zp−1

n .
The matrix equation for �V‖ is sufficient to solve for the

coefficients. On the other hand, the possible occurance of
numerical errors in the path integral computation and the
limited validity of the multipole decomposition, which only
holds for small |z|, enforces cross-checking with the trans-
verse data. To get the best results, information of all V
should be used simultaneously. To do this, rectangular ma-
tricesG are defined by

⎛
⎜⎝

c0
...

cP−1

⎞
⎟⎠ = G1�c ,

⎛
⎜⎝

1c1
...

PcP

⎞
⎟⎠ = G2�c, (10)

where �c is a P + 1-dimensional vector containing all cp
from 0 to P . The imaginary part of the bracketed term
in (9) can be expressed in terms of the real and imaginary
components�a,�b.One must now also separate �X into its real
and imaginary multipole components. Furthermore, the re-
sulting matrix equation is still complex, since �X is a com-
plex vector, but �V‖ must be real (which leads to inversion
problems). To resolve this, the final equation system can
be written as

⎛
⎝

�V‖

� �X

� �X

⎞
⎠ =

⎛
⎝�M G1 �M G1

�M G2 −�M G2

�M G2 �M G2

⎞
⎠(

�a
�b

)
. (11)

To solve this equation system for �a,�b, singular value de-
composition
(
�V‖

�X

)
:= uΣv

∗

(
�a
�b

)
⇒

(
�a
�b

)
= vΣ

−1
u
∗

(
�V‖

�X

)
(12)

is used. For voltages of a number of eigenmodes Q to be
processed, their column 2N vectors can be concatenated to
form a 2N ×Q matrix.

Since multipole expansion of the longitudinal voltage is
used, there must be at least one extremal point if compo-
nents higher than dipolar are included. In fact, if the field
is dominated by quadrupolar modes, one is interested in
the exact position of this extremal point z0, since the trans-
verse voltages included in X(z) cancel out for this path.
The extremal point z0 is given by

X(z0) =
∑
p

pcp zp−1
0

!
= 0, (13)

which can easily be solved numerically for z0 by finding
the roots of the given polynomial.
To check if the number and position of paths for the

given multipole order is sufficient, one should check for the
ratio σ1/σP to be not too large. To check if the multipole
decomposition method is valid for the integration path re-
gion, one should investigate if the components larger than

P of the vector u∗

(
�V‖

�X

)
do vanish.

Preliminary Results and Outlook
Figure 1 shows a reconstructed area around the central

axis path for the BERLinPro main linac cavity for a mainly
quadrupolar mode, and the forceless path position. The
irregular isolines at the outer edge indicate a mixing with
higher order multipole field components. For more results
on the BERLinPro main linac, see [1].
The obtained information is important in the considera-

tion of coupler kicks that do not stem from the operational
mode, but from quadrupolar or higher order modes (HOM
coupler kicks). The question whether to include mainly
quadrupolarmodes into HOMdamping considerationsmay
be answered using such studies, especially the z0 position
distribution along all HOMs of the cavity. Such a study
may also help to answer questions regarding alignment tol-
erances of cavities and cavity strings.
For including more distant points from the axis into the

equation, one may consider to relax the multipole condi-
tions and to include Bessel function terms into the modal
decomposition basis, thus allowing for two or more differ-
ent complex coefficients to describe each multipole. As an
extreme case for all points of a cylindrical mesh, this would
be equivalent to a waveguide mode-like decomposition of
the generalized path voltages on an electric boundary plane
with V‖, iV⊥ instead of �E‖, i �H⊥.

BEZIER SPLINE CAVITIES

In modern accelerator facilities, high acceleration gradi-
ents and duty cycles are achieved using SRF cavities. To
protect these cavities from quenching and RF breakdown,
sufficiently small peak surface electric fields in comparison
to acceleration gradient Esurf/Eacc are necessary. There-
fore, the cavity shapes must be constructed from smooth
profile curves.
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From the disk-loaded cavity, design of such cavities has
evolved from first rounding off the edges, and then sub-
stituting them by elliptical shapes, leading to modern SRF
”re-entrant”, ”low-loss” and ”TESLA-shape” [5] cavities
which suppress resonant multipacting of secondary elec-
trons. While elliptical shapes have shown superior perfor-
mance, this parameterization is qualified by historical de-
velopments, as to the authors’ knowledge, no other parame-
terizations of similar smoothness have been systematically
researched for ultra-relativistic particles. The spline cav-
ity geometry is such an alternative shape with additional
desirable properties [2].

Figure of Rotation Parameters
A Bezier spline is a parameterized curve [3]

�s(t) = �a0 + �a1t+ �a2t
2 + ... =

N∑
n=0

�snbn,N(t) (14)

with Bernstein polynomials bn,N and t ∈ [0, 1]. TheN +1
points �sn define the so-called control polygon and contain
the free parameters of the spline. Let us consider the sim-
plest possible case of a cubic (N = 3) Bezier spline as
shown in Fig. 2. The geometry parameters are reduced by
cell periodicity conditions and elementary RF constraints
to a set of only three parameters [2], compared to five for
an elliptical cavity. These parameters can be optimized ac-
cording to the specific purpose of the cavity.

Implementation and Results
For the single cell computations with periodic bound-

ary conditions, we used the well-known 2d code SUPER-
FISH [4]. Since the SUPERFISH mesher cannot use spline
curves, a small wrapper for MATLAB was developed. The
spline geometry was discretized by calculating a 200 point
(halfcell) polygon from its parameters (Fig. 2), which was
then used as input in SUPERFISH, also specifying a spe-
cial localized mesh that matches the polygon discretization
accuracy.
A parameter sweep for a given iris radius and an external

equator tuning procedurewere also implemented to tune all
cavity sets to a π-mode frequency of 1.3 GHz [2]. The scan
of the (v1, v2)/L parameter space was processed in a spi-
ral pattern to fully exploit the similarities between spline
shapes with only slight parameter differences. A second
scan with given radii for the 0-mode was performed, ob-
taining the corresponding frequency needed for the inter-
cell coupling constant κ [6]. The procedure for a fixed iris
radius took approx. 3.5 hours on a standard PC [2].
Figure 3 shows the results for a typial iris radius of

35mm. It can be seen by comparison e.g. with [5] that
the cubic spline shape geometry performance is in roughly
the same range as the standard elliptical cavity geometries,
although as stated, the cubic shape has two less free param-
eters. By inspecting the map, the trade-off between differ-
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Figure 2: Parameterization for cubic Bezier shape (left),
elliptical parameterization (center) and exemplary result
for electric field lines (v1 = 0.9, v2 = 0.65, Riris =
35mm, Req = 103.60mm, right)
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Figure 3: Cubic Bezier map for a 1.3GHz cavity with iris
radius 35mm. The map shows the cubic interpolated iso-
lines of R/Q [Ω] in black, Esurf/Eacc in red, the Geome-
try factor [Ω] in green, and the intercell coupling constant
[10−3] in blue.

ent figures of merit in the design process becomes visible
(see e.g. red and black lines).
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