

High-Performance SC Cryomodules for CW Ion Accelerators

LINAC 2010

Speaker: Mike Kelly Physics Division

September 14, 2010

Contributors and Outline

Outline

- 1. A few of the significant developments worldwide
- 2. ANL approach to CW SC Cryomodule

Thank you

- Bob Laxdal TRIUMF
- Amichay Perry SARAF
- Alberto Facco INFN Legnaro
- Thomas Nicol, Ivan Gonin FNAL
- Evgeny Zaplatin Jülich/IFMIF
- Walter Hartung MSU

SC Ion Accelerators Around the Globe

SC Ion Accelerators Around the Globe

Location	Cavity Type		Frequency (MHz)		Beta (v/c)		# Cavities
Spiral-2/Ganil	QWR		88		0.07,0.12		26
MSU/ReA3	QWR		80.5		0.04, 0.085		15
SARAF/Soreq	HWR		176		0.09		6
Triumf	QWR		80		0.06-0.07		40
New Delhi	QWR		97		0.08		14
Canberra	Split-ring, QWR		150.4		0.09-0.11		14
INFN Legnaro	QWR		80, 160		0.05-0.13		74
Kansas State	Split-ring		96, 97		0.06-0.1		14
JAERI	QWR		130, 260		0.1		46
U. Washington	QWR		150		0.1-0.2		36
Florida State	Split-ring		97		0.07-0.1		15
Stony Brook	Split-ring, QWR		150.4		0.07-0.1		40
Argonne	Split-ring, QWR		48, 72, 97		0.01-0.10		64
	Operations & Upgrades		Under construction	No op	o longer berating		

SC Ion Accelerators Around the Globe

Applications	Frequency (MHz)	Beta (v/c)	Particle type	# Cavities (total cavities)	Duty Factor
CERN Rex-Isolde	101	0.063, 0.103	Heavy-ion	32	CW
MSU FRIB	322 (HWR)	0.285, 0.52	Proton to Heavy-Ion	336	CW
Project X	325 (Spoke)	0.2-0.6	Proton	88	CW
ESS	352 (Spoke)	0.45	Proton	42	Pulsed
EURISOL	176, 352	0.09-0.36	Proton, Light ion	108	CW
IFMIF	175 (HWR)	0.094, 0.17	Deuteron	42	CW

Planned

Modern low-beta TEM, a.k.a "drift-tube", cavities

- Operated in lowest TEM-like mode
- $\lambda/4 \text{ or } \lambda/2 \text{ structures}$
- Physical dimensions 0.1<l<1 meter</p>
- Frequencies 50-800 MHz
- 4 Kelvin operation (Future 2 K @ f~325 MHz and above?)

Clean techniques for low- β SRF cavity 10 years ago

Dramatic performance increase from HPR consistent and repeatable if cavity kept clean

ISAC-II Phase II SC-Linac Upgrade and Status

- Eight cryomodules containing 40 quarter-wave cavities providing V_{ACC}~1 MV/cavity
- Clean room assembly of the complete cryomodule

ATLAS SC Ion Linac at ANL: Upgrade and Status

- 1 Cryomodule, seven β=0.15 quarter-wave cavities added to the ATLAS heavy ion linac
- Separate cavity vacuum space
- Maximum voltages of 3.75 MV per cavity have been achieved (E_{PEAK} = 48 MV/m, B_{PEAK} = 88 mT)
- Real gradient for operational cavities of 14.5 MV in 4.6 m module length; new standard for low-beta SC linacs

Accelerating Voltage

SARAF at Soreq

- Six 176 MHz β =0.09 half-wave cavities fabricated in industry by Accel (now RI); first TEM $\lambda/2$ structures for beam acceleration
- CW 1 mA proton beams accelerated to 3.7 MeV

INFN Legnaro: ALPI-PIAVE low-beta section upgrade

- Aim: Double energy gain at minimum cost by cooling rf couplers
- Status: 1 cryostat successfully upgraded and operated at 6 MV/m
- Before: V_{ACC}=11 MV, 20 QWR's,
- After (goal): V_{ACC}=21-25 MV, 24 QWR's

Prototypes under design/construction

8 HWR's 175 MHz β=0.094
~70 kW RF power per cavity!

Project X

3 single-spoke 325 MHz β=0.2 cavities/4 SC solenoids

Part II. ANL approach to CW SC Cryomodule

- Electromagnetic Design
 - Minimize surface fields consistent with fabrication/processing/cleaning
 - Steering corrected drift-tube face to eliminate beam steering
- Mechanical Design
 - Below niobium yield cold for all normal conditions
 - 4 K system, moderate beam loading
 - Null helium pressure sensitivity
 - Increase pendulum mode frequency with modest stiffening

ANL Design for a Low-Beta SC Cavity

Complete Assembly

- Niobium is hydroformed or deep drawn all with blended transitions
- Stainless steel helium vessel assembled around the e-beam welded niobium cavity

ANL Processing for a Low-Beta SC Cavity

- Final electropolishing on complete jacketed cavity
 - Similar to ILC 9-cell EP
 - Direct water cooling built in
- Why not BCP?
 - EP demonstrated statistically better for niobium approaching rf limits
 - EP can be repeated without making surface progressively rougher

Electropolishing

- Minimize parts required inside the clean room:
 - Cavities
 - Solenoids
 - Cold Section of Coupler (4 kW E-field)
 - Vacuum lines and valves

- Assemble remaining components outside clean room:
 - Cryogenics (4.5 K helium, 150 Watts, 15 W static load)
 - Tuners (30 kHz pneumatic slow tuner, fast piezo electric)
 - Cryostat lid

ANL SC Cavity/Cryomodule: Final Assembly

- Angled end walls for beam valves; also used for FRIB, Rex-Isolde
- Main features
 - Long (5 m) cryomodule, high packing factor
 - Top loading; easy access to cavities
 - 80 K Copper, magnetic shields, multi-layer insulation permanent in lower section of cryomodule
 - Goal: 2.5 MV/cavity, 17.5 MV in 5 meters

80 K Copper Shield

Into the tunnel...

Into the tunnel - June 1, 2009

Summary

- Major improvements in SRF technology for ion linacs in the last decade
 - Sophisticated designs
 - Clean room techniques
 - Improved cavity performance
- New directions for SC ion linacs
 - Upgrades and new machines for basic science
 - Very high intensity CW light ion drivers for medicine, national security, and accelerator driven systems
- The ANL approach
 - Low frequency optimized cavities
 - Large voltage gain per cavity, high quality factor (Q)
 - High real estate gradient for cryomodules
- New high performance SC cryomodules well positioned for next generation of highcurrent CW ion linacs