

Status of the Cornell ERL Injector Cryomodule

Matthias Liepe Cornell University

This work is supported by NSF-0131508 and DMR-0937466

JAC10

S. Belomestnykh E. Chojnacki B. Clasby Z. Conway R. Ehrlich D. Heath J. Kaufman G. Hoffstaetter M. Liepe

- V. Medjidzade
- D. Meidlinger
- H. Padamsee
- S. Posen
- P. Quigley
- J. Sears
- V. Shemelin
- E. Smith
- V. Veshcherevich

...and the rest of the Cornell ERL Team

<u>The Cornell</u> <u>Energy Recovery Linac Project</u>

- Cornell is designed are pursuing funding for a Energy Recover Linac (ERL) based x-ray light source.
- A project design and description report is near completion.
- An ERL injector prototype has been developed, fabricated, and is currently under commissioning.

LINAC 2010, Tsukuba, September 12-17, 2010

0.5 MW RF

A 100 mA SRF Injector for the Cornell ERL X-ray Light Source

SRF Cryomodule

Diagnostics beam line

LINAC 2010, Tsukuba, September 12-17, 2010

DC Gun-

Slide 4

- Introduction
 - The ERL Injector Prototype at Cornell
 - The ERL Injector SRF Cryomodule
- Initial Challenges and Solutions
 - HV power supply, gun, laser, and cryomodule rework

Outline

- Highlights: Pushing the envolope
 - Beam results
 - Cryomodule performance
- Outlook

Introduction: The ERL Injector Prototype at Cornell The ERL Injector SRF Cryomodule

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Cornell 100 mA ERL Injector

Nominal bunch charge Bunch repetition rate Beam power Nominal gun voltage SC linac beam energy gain Beam current

Bunch length Transverse emittance

design parameters

77 pC 1.3 GHz up to 550 kW 500 kV 5 to 15 MeV 100 mA at 5 MeV 33 mA at 15 MeV 0.6 mm (rms) < 1 mm-mrad

ERL Injector Schedule

ERL prototype proposal submitted 2001: NSF funds the injector part of the proposal 2005: Sept. 2006: 1st beam from the DC gun Beam line and cryomodule fabrication and Sept. 2007: assembly starts Cryomodule assembly is finished March 2008: **April 2008**: Module installation in ERL injector prototype and cool down June 2008: First RF **July 2008**: First beam test period starts August 2009: End of first test period; rework of DC gun and SRF cryomodule starts First beam after cryomodule rework **April 2010**:

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

<u>100 mA ERL Injector: Technical</u> <u>Components</u>

DC Gun

LINAC 2010, Tsukuba, September 12-17, 2010

Slide 9

Cornell 100 mA ERL Injector

100 mA, 5 MeV SRF module 5 x 2-cell 1.3 GHz cavities

Diagnostics section

- emittance measurement systems
- deflecting cavity
- view-screens
- BPMs, BLMs, Faraday-cups, ...

ERL Injector Cryomodule

- Total 2K / 5K / 80K loads: 30W / 60W / 700W
 - LINAC 2010, Tsukuba, September 12-17, 2010

Cornell Laboratory for Accelerator-based Sciences and Education (CLERL Injector Module Innovations (I)

 Tuner stepper replaceable – while string is in cryomodule

 Rail system for cold mass insertion into Vacuum Vessel

 Gatevalve inside of module with outside drive

LINAC 2010, Tsukuba, September 12-17, 2010

- Precision fixed cavity support surfaces between the beamline components and the HGRP ⇒ easy "self" alignment
- Cavity-subunits can be fine-aligned while cavities are at 2K (if required)

LINAC 2010, Tsukuba, September 12-17, 2010

Beam Line Components (I)

SRF cavities:

- Designed, fabricated, prepared and tested at Cornell
- Only BCP, no 800C
- All cavities met 15 MV/m spec in vert. test

RF input couplers:

- Design by Cornell for high cw power > 50 kW
- 2 prototypes tested up to 60 kW cw, 80 kW pulsed
- 10 production couplers supplied by industry

Beam Line Components (II)

HOM absorbers:

- Design by Cornell for strong, broadband HOM damping
- 6 production loads fab'ed by industry

Frequency tuners:

- Modification of the INFN blade tuner
- Added piezos for microphonics compensation (R&D)
- 6 units fabricated by industry

ERL Injector Module Assembly at Cornell

Gate valve internal

to cryomodule

Vacuum vessel interface flange

Beamline in clean room

Cleanroom assembly fixturing

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

ERL Injector Module Assembly at Cornell

Cold mass rolled into vacuum vessel

- The first run period (July 2008 August 2009) revealed a few issues, that needed to be addressed:
 - Gun ceramics: punch-through events
 - Laser: stability and power handling issues
 - Gun HV: poor stability (control loop got unstable above a few mA of current)
 - Injector cryomodule: lower than expected cavity Q₀, HOM load absorber tiles charging
- Solutions where implemented during a recent shut-down. Commissioning and beam studies have re-started now.

Gun Ceramic: Issue

DC photogun operational for over 3 years

- Strong points: quick photocathode removal & activation, excellent vacuum (good lifetime)
- Issues:
 - Field emission & ceramic puncture (425 \rightarrow 250 kV)

Field emitted electrons can build up on the insulator and punch through (had event at 450 kV)

Bulk resistivity of 6.5x10¹⁰ Ohm-cm

Gun Ceramic: Solution

- Designed a segmented insulator with intermediate guard rings to catch any field emitted electrons before they reach the insulator material.
- Will be installed in the fall \Rightarrow >500 keV

LINAC 2010, Tsukuba, September 12-17, 2010

- 750 kV, 100 mA power supply
- Built by vendor (Kaiser Systems)
- Nice and small, but:
 - Need to run current over wide dynamic range pA to 100 mA.
 - When running at a few mA current, the HV stability was not very good.
 - \Rightarrow Limited high current operation to a few mA so far.
- Solution: Vendor improved control loop stability to reduce HV ripple ⇒ High current operation restarts this week.

LINAC 2010, Tsukuba, September 12-17, 2010

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

<u>Module Re-work to address low</u> <u>Q₀ and Absorber Charging</u>

3 weeks later

"module in boxes"

~3 months later

- Re-processed
 SRF cavities
- Fixed absorber charging problem

Cavity Re-Processing

Before:

 Cavities met gradient specs, but had low intrinsic quality factors Q₀ (Q ≈ 3 to 5.10⁹ at 2K). Q₀ degradation over time?

After module re-work:

- Intrinsic quality factors improved $(Q \approx 6 \cdot 10^9 \text{ to } 1 \cdot 10^{10} \text{ at } 2\text{K})$
- No indication of Q-degradation

Charging of HOM Absorber Tiles

Before rework of cryomodule (measured with 250 keV beam!):

 \Rightarrow Transverse kick fields in the injector cryomodule!

Charging of HOM Absorber Tiles

Uncoated between electrodes

- Low resistivity of HOM absorber tiles: will hold charge for seconds to days!
 - Worst offender: Ceramic 137Zr10, followed by ferrite Co2Z and TT2
- Small beam loss charged up absorber tiles -> kV electric fields at beam position!

- → Removed all tiles from the inside of the HOM absorber (facing the beam; outside tiles are shielded from the beam by metal plates)
 - \rightarrow HOM damping still sufficient for 100 mA ERL injector
- → Cut stress relief slots in the tiles to reduce stresses during cool down further

Future HOM loads: New RF absorber materials identified:

- graphite or CNT loading of ceramic
- prototype next- generation load this year

Solution: HOM Absorber Re-Work

After rework of cryomodule (measured with 250 keV beam!):

Highlights: Pushing the envolope

Beam results Cryomodule performance

Beam Results

Nominal bunch charge Bunch repetition rate Beam power Nominal gun voltage SC linac beam energy gain Beam current

Cornell Laboratory for

Accelerator-based Sciences and Education (CLASSE)

Bunch length Transverse emittance

design parameters

77 pC 1.3 GHz up to 550 kW 500 kV 5 to 15 MeV 100 mA at 5 MeV 33 mA at 15 MeV 0.6 mm (rms) < 1 mm-mrad achieved 77 pC 50 MHz and 1.3 GHz 45 kW 350 kV 5 to 15 MeV 9 mA Improved HV power supplies is installed now, and high current studies.

Highlight: High current status

 20 mA DC current demonstrated from the gun (limited by gas backstream from the dump)

gas backstream from the dump

• 5 MeV beam running so far reached ~9mA (currents will be ramped up further starting this week with improved HV power supply in place now...)

Highlight: Beam Emittance

y' (mrad)

- At low bunch charge (at 5 MeV):
 - Normalized emittance in both planes is close to thermal limit at cathode for given laser size: 0.2 to 0.4 mm mrad
- At higher bunch charge (10 MeV, 77 pC):
 - $-\epsilon_{N,90} = 1.6$ mm-mrad for 90% beam core
 - Increasing the gun voltage to 500 kV is expected to reduce this number further

LINAC 2010, Tsukuba, September 12-17, 2...

SRF Injector Cryomodule Highlights

LINAC 2010, Tsukuba, September 12-17, 2010

Highlight: Cavity Alignment

 Shift of cold mass during module cool down (from Wire Position Monitor)

```
•Expected: dx= 0.38 mm
dy= 0.94 mm
```

•Observed: dx = 0.58 mm

dy = 0.81 mm

Cavity string is aligned to ±0.2 mm after cool-down!

Highight: RF Input Couplers

- All twin input couplers have been processed in pulsed mode up to 50 kW under full reflection
 - •25 to 75 hours of processing (RF on time).
- DC voltage can be applied to center conductors (the original intent was to provide bias voltage for suppressing multipacting).
- This proved to be very useful tool for beam diagnostics.

• HOM absorbers allow for calorimetric measurement of the total HOM power excited by the beam.

Highlight: HOM Studies

- Heaters on the HOM loads used for calibration
- Maximum beam current so far 9 mA → only a few 100 mW of HOM power per cavity → undetectable
- At higher bunch charges and currents, we expect several 10W of HOM power per load!
- 8 HOM antennas per load:
 - Working on prototype electronics to use HOM load antennas as BPMs (will use beam induced signal at 2.6 GHz)
 - Study HOM spectrum.

Slide 37

 Preliminary network analyzer measurements of HOM damping in the ERL injector module confirm strong suppression of monopole and dipole HOMs (typical Q's of a few 1000)

- Use HOM pickup antennas
- Gives estimate of R/Q*Q of modes excited

LINAC 2010, Tsukuba, September 12-17, 2010

//,

Slide 39

Highlight: Integrated HOM Power Spectrum

//.

- Allows to study change with bunch charge and bunch length
- Contains information on longitudinal bunch profile and cavity impedance
- Just started...much more to come...

 LLRF electronics for the ERL injector is a new, improved generation of LLRF system previously developed for CESR

Highlight: LLRF Field Control

- <1 μ s latency feedback loop
- Beam current feedforward
- Klystron HV ripple feedforward
- Fast tuner loops for microphonics compensation
- Built in state machine
- Performs well with excellent field stability

Highlight: RF field stability

LINAC 2010, Tsukuba, September 12-17, 2010

Cornell Laboratory for Accelerator-based Sciences and Education (CLASS Measurements with a Modal Shaker

Cornell Laboratory for

Highlight: Mechanical Coupling Characterization

Accelerator-based Sciences and Education (CLASS Measurements with a Modal Shaker

Excitation Point	Excitation Force	Detectable With Cavity Accelerometer	Detectable On Cavity RF Frequency (>0.1Hz modul.)
Coupler Waveguide	110 N (25 lbs)	No	No
Coupler	110 N (25 lbs)	No	No
Cryomodule Saw-Horse Support	110 N (25 lbs)	Yes	No
Helium Gas Return Pipe Support	110 N (25 lbs)	Yes	Yes
Beam Line	10 N (2 lbs)	No	No
Helium Supply/Return	110 N (25 lbs)	No	No

 Ground vibrations and other mechanical vibrations do **not** strongly couple to the SRF cavities

 Main contribution to cavity microphonics comes from fast fluctuations in the Hepressure and the cryogenic system

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

 Use fast frequency tuner (usually piezoelectric driven)

- Microphonics feedback challenging because of complex transfer function piezo → ∆f with mechanical resonances
- Linearity and small hysteresis important!

Highlight: Active Microphonics

Control

Piezo Hysteresis Curve: DC frequency shift vs. applied voltage to all 4 piezos:

Highlight: Active Microphonics

Control

LINAC 2010, Tsukuba, September 12-17, 2010

//,

Highlight: Active Microphonics Control

Piezo Feedback on Tuning Angle/Cavity Frequency: \Rightarrow Reduces rms microphonics by up to 70%!

 \Rightarrow Important for ERL main linac, where Q₁ >5.10^{7 and} P_{RF} $\propto \Delta f!$

LINAC 2010, Tsukuba, September 12-17, 2010

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Highlight: Active Compensation of Lorentz-Force Detuning

- Piezo-electric actuators implemented in the cavity frequency tuners
- Used feedback
 loop for active
 compensation

Slide 48

 Works very reliably

- Initial commissioning of the Cornell ERL injector has revealed a few issues which needed to be addressed
 - Solutions were found and successfully implemented.
- Testing of the Cornell SRF ERL injector prototype cryomodule was very successful:
 - cryogenics, cavity alignment, cavity voltage, input couplers, LLRF field control, and HOM damping all meet or exceed specs
- Beam properties near design values have been shown:
 - good emittance which will further decrease with higher gun voltage
 - Beam current is on its way up \rightarrow 100 mA in reach

To come: ERL Main Linac

- Main Linac cryomodule 10 m long
 - 6 cavities, 7-cells/cavity, 16.2 MV/m
 - Beamline HOM loads
 - 1 quadrupole, X-Y steering coils
- Development and prototyping has started
 - Main linac cavity design: see paper THP034 by Nick Valles
 - Successfully operated a 9-cell cavity at Q_L=2·10⁸ with exceptionally high field stability (Cornell-HZB collaboration)

LINAC 2010, Tsukuba, September 12-17, 2010

Slide 52