RI Beam Factory and Other Radioactive Isotope Beam Facilities

(1)report the present status of RIBF(2)outline the worldwide RI beam facilities in the near future

N. Fukunishi Nishina Center for Accelerator-Based Science, RIKEN

Radioactive Isotope Beam

Discovery science Nuclear Structure

halo, skin, super-heavy elements

Nuclear Astrophysics

r-process, neutron star, supernovae **Fundamental symmetries**

electric dipole moment search in RI

Application Nuclear energy

neutron cross section relevant to ATW

Medicine and Biology

imaging, targeted therapy, radiotracer Industry

RI as in-situ detectors

National Security

ISOL vs in-flight

thought to be complementary

	ISOL	In-flight	
Driver ion	light ions (p, d)	heavy ion	
Origin of RI	target ion	projectile ion	
Target	thick target	thin target	
In-target yield	high	low	
RI separation	RI separation sensitive to chemical properties		
Time scale	> 50 ms	> I µs	
Instrumentation	Instrumentation post accelerator fragment se		
Beam quality	Beam quality good poo		
Experiments	spectroscopy	reaction scheme	

First-generation RI beam facilities

RIKEN RI Beam Factory

The first of the second-generation in-flight facilities

- RILAC = RIKEN Heavy-ion linac (1980~)
- CSM = Charge-State Multiplier (2001~)
- RRC = Riken Ring Cyclotron (1986~)
- fRC = fixed-frequency Ring Cyclotron (2006~)
- IRC = Intermediate-stage Ring Cyclotron (2006~)
- SRC = Superconducting Ring Cyclotron (2006~)

Specifications of RIBF ring cyclotrons

	fRC	IRC	SRC	RRC
K-number (MeV)*	570	980	2600	540
Number of sector magnets	4	4	6	4
Velocity gain	2.1	1.5	1.5	4.0
Number of trim coils (/ sector magnet)	10	20	4(SC) 22(NC)	26
RF resonators	2+FT	2+FT	4+FT	2
Frequency range (MHz)	54.75	18~38	18~38	18~38

SC = superconducting NC = normal conducting FT = flattop resonator

SRC works as a good isochronous cyclotron

 $\Delta V/V \sim 0.01\% \Delta \psi \sim \pm 0.1^{\circ} RF$

Stability of RF resonators

Acceleration modes in RIBF

Polarized deuteron, ¹⁴N 250 ~ 440 MeV/u @ SRC

Operation statistics / Stability

Year	Beam service to users (h)	All RIBF operation (h)	Reliability
2007	414	1845	/
2008	496	205 I	0.68
2009	1129	3036	0.68
2010*	907	1820	0.86

Reliability = <u>actual beam service time</u> scheduled beam service time

"All RIBF operation" include beam tuning, beam commissioning etc in addition to beam service to users.

*First half of 2010

2010/5/21 ~ 6/11 ⁴⁸Ca 345 MeV/nucleon

Beam bunch signals measured by a phase-pickup electromode

RIBF performance

Transmission efficiency*

Beam intensity

ion (date)	(pnA)
²³⁸ U ⁸⁶⁺ (07/07/03)	0.05
⁸⁶ Kr ³⁴⁺ (07/11/04)	33
²³⁸ U ⁸⁶⁺ (08/11/16)	0.4
⁴⁸ Ca ²⁰⁺ (08/12/21)	175
⁴ He ²⁺ (09/10/31)	1000
²³⁸ U ⁸⁶⁺ (09/12/19)	0.8
⁴⁸ Ca ²⁰⁺ (10/5/31)	230
¹⁸ O ⁸⁺ (10/6/17)	1000

*Charge stripping efficiencies are excluded

Variable-energy mode

RILAC2

Intensity upgrade of uranium beams

New RI beam facilities worldwide

ISOL facilities

	Location	Driver	Power (kW)	Post accel.	Fission rate	RI yield
Spiral2 (2012)	France	d, sc-linac	200	K265 cyclo.	10 ¹⁴ (pps)	10 ¹⁰ (pps)
SPES (2013)	Italy	p, cyclotron	8	sc-linac	10 ¹³ (pps)	10 ⁹ (pps)
HIE-ISOLDE (2015)	Swiss	P, synchrotron	10	sc-linac	10 ¹³ (pps)	10 ⁹ (pps)
ARIEL (2015)	Canada	p, cyclotron e-linac	100 / 100	sc-linac	~10 ¹⁴ (pps)	
EURISOL (> 2020)	EU	p, sc-linac	5000	sc-linac	10 ¹⁶ (pps)	10 ¹² (pps)

In-flight facilities

	Location	Driver	Energy (MeV/A)	Intensity (uranium)	Fragment separator
FAIR (2016)	Germany	synchrotron	1500	2×10 ¹¹ pps	Super-FRS
FRIB (2017)	USA	sc-linac	200	5×10 ¹³ pps	3-stage separation

Next (intermediate) generation ISOL facilities

'E a 14.5 AMeV HI Alqud, ImA 'E a 20 A MeV p.d, 'He (Alqud in

SC-linacs

higher energy post-accelerator PIAVE-ALPI, SPES REX upgrade, HIE-ISOLDE ISAC upgrade, ARIEL
high intensity driver 200-kW driver (SPIRAL2) 5-MW driver (EURISOL) I00-kW electron driver (ARIEL/ISAC)

Target technology

- neutron converter carbon, SPIRAL2 Hg, EURISOL
- •UCx target with a fast release time SPES, SPIRAL2, EURISOL

Multi-user capability

5 experimental ports (GANIL/SPIRAL/SPIRAL2)
Two new target stations (ARIEL)
6 UCx targets (EURISOL)

RI beam intensity

10⁹ pps (SPES, HIE-ISOLDE) 10¹⁰ pps (ARIEL, SPIRAL2) 10¹² pps (EURISOL)

Asian activities in RI beam science

South Korea Heavy-ion Accelerator for RIB (KoRIA)

- ●Multi-purpose
- Both ISOL and In-flight
- •In-fight fragmentation after ISOL

- •SC linac
- 10-pµA 200-MeV/nucleon U beam
- •*K* = 100 MeV high-intensity cyclotron
- •Budget = 0.4 B US\$, Schedule = 2016 construction complete

VEC-RIB Facility VECC Kolkata, India

Four RF systems have been successfully commissioned RFQ Pre-buncher IH-linac

H. K. Pandey et al.; Proc. of IPAC'10, THPEA002

FAIR

(Facility for Antiproton and Ion Research)

The next generation in-flight facility in Europe

•Synchrotron-based multipurpose facility

APPA (Atomic and Plasma Physics, and Applied Science) CBM (Hadron and quarks in compressed nuclear matter)

NuSTAR (Nuclear and Nuclear Astrophysics) PANDA (Antiproton)

Main Accelerator SIS100

Ultra-high vacuum under the control with dynamic pressure rise Bapid cycling superconducting magnets (4 T/s)

Rapid cycling superconducting magnets (4 T/s) High RF voltage

Advanced Ring technologies

CR - fast stochastic cooling and isochronous mass measurements

NESR - precise mass measurements, e-RI scattering, internal -target experiments

•Stripper-problem free facility

•Construction will be completed in 2015 - 2016

GSI (Germany and State Hesse) and 15 partner countries promote FAIR project.

O. Boine-Frankenheim et al.; Proc. of IPAC10, WEYRA01

FIAR Baseline Technical Report (March 2006) Green Paper "The Modularized Start Version" (Nov. 2009)

FRIB (Facility for Rare Isotope Beams)

The power-front in-flight facility

Front-end (< 0.3 MeV/nucleon)

High-intensity ECR ion source (33+&34+,6] pµA each)

Driver Linac (Sc-linac)

Segment I (< 17.5 MeV/nucleon for uranium) 2 types (β = 0.041 & 0.085) of QWRs at 80.5 MHz 14 cryomodule

Charge stripping at 17.5 MeV/nucleon for uranium

Segment 2

2 types (β = 0.285 & 0.53) of HWRs at 322 MHz 31 cryomodule

400 kW beam power for all ions
200 MeV/nucleon for uranium → 8 pµA
610 MeV for protons

•High-acceptance & high-resolution 3-stage fragment separator

•MSU contribution

•First beam ~ 2017

•Future upgrade - 400 MeV/nucleon uranium

RIBF, FRIB, FAIR

	RIBF	FRIB	FAIR
Energy (MeV/A)	345	200 (400)	1500
Driver beam intensity (pps)	1.5×10 ¹² (6×10 ¹² , goal)	5×10 ¹³	2×1011
RI beam intensity for very exotic RIs*	0.11 (0.47)	I (∼I0, after upgrade)	0.62
Driver	Cyclotron	SC-linac	Synchrotron
Charge stripper	II MeV/A 50 MeV/A	17.5 MeV/A	I.4 MeV/A gas stripper OK
pro	 Simple Compact Few RF resonators cost effective CW machine 	 Large acceptance Multi-charge-state acceleration possible High energy upgrade is straight forward 	 High energy Free from stripper problem Cooler & storage ring experiments
con	 No design universality for large scale cyclotron Small longitudinal acceptance Beam loss at extraction is critical 	 Not compact Large cryogenic facility 	 Not compact High vacuum required Low beam intensity

 $*E^{2.5}$ dependence is assumed, E (MeV/A) - under discussion

Uranium Beam Intensity

FRIB vs RIBF

RIBF

two-step charge-stripping scheme is adopted.

0.27 pµA uranium beam is expected after RILAC2 upgrade.

10 pµA $^{238}\text{U}^{35+}$ ion at ECR-IS

60% transmission efficiency in total (does not include charge stripping efficiency)

FRIB

A innovative multi-charge-state acceleration is proposed.

8 pµA uranium beam is expected with 6 pµA each for $^{238}U^{33+}$ and $^{238}U^{34+}$

From R. C. Yoke et al.; Proc. of SRF2009, FR0AAU02

Intensity upgrade strategy in RIBF

Introduction of K=2300 MeV superconducting fixed-frequency cyclotron in stead of fRC

Energy upgrade toward I A GeV ?

A geometrical consideration indicates that RIBF Dream Machine is not crazy.

	SRC	PSI-DM	SRC- booster
Eext	0.35 A GeV	I GeV	0.9 A GeV
Einj	0.12 A GeV	0.12 GeV	0.35 A GeV
Magnets	6 (3.8 T)	12 (2.1 T)	I2 (4T)
Cavity	4 (0.6 MV)	8 (I MV)	7 (I MV)
Rinj	3.56 m	2.9 m	7.15 m
Rext	5.36 m	5.7 m	9.0 m
Velocity gain	1.5	2.0	1.26
Energy gain (extraction)	0.8 A MeV	6.3 MeV	2.9 A MeV
DR/dn (centering)	2.5 mm	5.6 mm	4.3 mm
K value	2.6 GeV	I GeV	6.9 GeV
Total Acc. Voltage	0.64 GeV	0.88 GeV	I.54 GeV

Th. Stammbach et al., AIP conf. Proc. 346 (1994) 229.

Summary

Radioactive Isotope beam facilities worldwide

- •RI beam intensities obtained by the first-generation RI beam facilities are not sufficient to access nuclei far from the stability of the nuclear chart.
- •Many next-generation RIB facilities are under construction and planned including both ISOL and in-flight facilities.
- •SC-linacs will be widely used for these new facilities.
- •Activities of Asian countries in this research field has been increasing.

RIBF

- •Design goal intensity was established for light ions (He and O)
- •⁴⁸Ca 23% of design goal
- •Uranium beam intensities should be increased.
 - A new injector RILAC2 will be commissioned in 2010.
 - Very-short life time of charge stripper is another important issue.
- •Reliability has been improved.

Next generation in-flight facilities (FRIB and FAIR)

•RI beam intensities expected in FRIB and FAIR are higher than RIBF.

Intensity-upgrade and/or energy-upgrade of RIBF is necessary.