Worldwide ERL R&D Overview

George R. Neil Jefferson Lab

LINAC10 Tsukuba, Japan

DOE BES Science Grand Challenges

Directing Matter and Energy; 5 Challenges for Science & the Imagination

1. How do we control materials processes at the level of the electrons? *Pump-probe time dependent dynamics*

2. How do we design and perfect atom- and energy-efficient synthesis of new forms of matter with tailored properties?

PLD, photo-chemistry, XRS

3. How do remarkable properties of matter emerge from the complex correlations of atomic and electronic constituents and how can we control these properties?

Pump-probe time dependent dynamics, XRS

4. How can we master energy and information on the nanoscale to create new technologies with capabilities rivaling those of living things?

Pump-probe time dependent dynamics, XRS

5. How do we characterize and control matter away -- especially very far away -- from equilibrium? *Non-linear dynamics, ultra-bright sources*

Report - Graham Fleming and Mark Ratner (Chairs).

Ultrafast, ultrabright, tunable THz/IR/UV/X-Ray light from next generation light sources

Thomas Jefferson National Accelerator Facility

Third generation x-ray sources

Fourth generation x-ray sources

Next Generation Photon Sources for Grand Challenges in Science and Energy W. Eberhardt, BESAC Feb. 2009 Currents over ~ 1mA the cost of RF power favors recovering beam power in an ERL rather than dumping beam

Please note that:

a) 4th Generation Sources do not displace need for 3rd Generation

b) ERL operation does not preclude FEL operation

C) ERLs without FELs suffer a large decrease in light produced per bunch due to lack of longitudinal bunching
D) mitigated by: operation at lower charge but very high repetition rate minimizes space charge driven emittance growth to achieve ultimate emittance

Applications need high repetition rate

		Photon Attributes:						
Research Opportunities	Research Area	Coherence	Brilliance (average)	Spatial resolution (<1nm)	Time resolution (< 1 ps)	Peak Brilliance	Energy Resolution	Polarization (circular, linear)
Nano materials for energy	Nanoparticle spectroscopy for solar cells	Nano XPS		Charge carrier dynamics spectroscopy				
Nano materials for energy	Charge transfer dynamics in photosynthesis				Scattering and spectroscopy to identify and control individual steps			
Nano materials for energy	Battery stress and degradation	function	unctional imaging and spectroscopy					
Information Technology	Magnetic quantum dot materials		Imaging in magnetic domains					
Information Technology	Understanding and development of novel supconductors		spatially resolved electronic characterization Nano-ARPES, RIXS					x
Environmental Sciences	Chemistry at the surface of mineral particles	imaging structure and function of mineral particles in a wet environment						
Catalysis and chemistry		monitor catalysis with atomic resolution under process conditions		movies of a chemical reaction, fs spectroscopy and scattering				
Life Sciences			flash imaging of f		of function at the cellular level			
Life Sciences		3-D m	3-D mapping of chromosomes					x
Health and medical Physics		Imaging and spectroscopy of enzyme chemistry				x		
Nano-materials			EXAFS of Clusters			spectroscopi of	c characterizat f individual clu	ion and imaging Isters
Quantum Control					resolving and controlling electron dynamics			
Extreme environments			分		X-ray imaging of plasma	1		
			ERL		processes	r F	EL	

From W. Eberhardt

Thomas Jefferson National Accelerator Facility

Flexible bunch structure + very short pulses possible

- Ability to independently optimize electron optics for each insertion device (or vary with time) although multiple in-line insertion devices make changes complex
- Small energy spreads more photons in narrow band
- Nearly equal and small transverse emittances for nearly round beams higher usable brightness, transverse coherence
- CW operation is more stable than a pulsed linac {but not as stable or reliable as a ring – must work to stabilize + educate light source users! }

Injector, injector, injector! No existing injector delivers required CW

brightness. Many groups are working on this: LBNL, Cornell,

Wisconsin, JLab, KEK, Daresbury, BNL, PKU...

- Brightness preservation: Solutions to coherent synchrotron radiation (CSR) emittance degradation, longitudinal space charge (LSC) in pulse compression
- Halo control essential for CW non-Gaussian tails!!!

High order mode & beam breakup control in cavities

Wakefield and propagating mode damping

Handling sizeable (~ 20 kW! @ 100 mA) THz radiation in bends

Resistive wall heating in undulators

Reducing srf dynamic load to lower refrigerator costs; probably more important than increasing gradient

Note: there are other applications for ERLs than just light sources, I will talk about those, too!

ERL R&D

Many approaches for a CW High Brightness Gun – but none working yet

INITIAL BEAM RESULTS FROM THE CORNELL HIGH-CURRENT ERL INJECTOR PROTOTYPE

I. Bazarov, S. Belomestnykh, E. Chojnacki, J. Dobbins, B. Dunham, R. Ehrlich, M. Forster, C. Gulliford, G Hoffstaetter, H. Li, Y. Li, M. Liepe, X. Liu, F. Loehl, D. Ouzounov, H. Padamsee, D. Rice, V. Shemelin, E. Smith, K. Smolenski, M. Tigner, V. Veshcherevich, CLASSE, Cornell University, Ithaca, NY 14853, U.S.A. H. Sayed, TJNAF, Newport News, VA 23606, U.S.A

Cornell

Encouraging results with good emittance and 4 mA current

Further work underway to increase gun voltage using KEK-style insulator

Figure 4: Measured (a), (c) transverse phase space after the gun and the corresponding emittance versus beam fraction curve (b), (d).

Figure 2: The layout of Cornell prototype ERL injector. Beam direction is to the left.

HIGH-VOLTAGE TEST OF A 500-KV PHOTOCATHODE DC GUN FOR THE ERL LIGHT SOURCES IN JAPAN

R. Nagai[#], R. Hajima, N. Nishimori, JAEA, Tokai, Naka, Ibaraki 319-1195, Japan
T. Muto, M. Yamamoto, Y. Honda, T. Miyajima, KEK, Oho, Tsukuba, Ibaraki 305-0801, Japa M. Kuriki, H. Iijima, Hiroshima Univ., Higashi-Hiroshima, Hiroshima 739-8530, Japan M. Kuwahara, S. Okumi, T. Nakanishi, Nagoya Univ., Nagoya, Aichi 464-8601, Japan

JAEA Major advance in high voltage operation!

Figure 3: Applied voltage vs total time in the high-voltage conditioning.

Figure 2: Field distribution (left) and emitted electron trajectories (right) of the gun.

Thomas Jefferson National Accelerator Facility

KEK <u>2-cell injector cavity</u> Two input port Same cell shape with STF-BL cavity and slightly enlarged beampipe Two input port for each cavity Two types, loop and antenna, of HOM

- couplers are applied
- 4 or 5 HOM couplers per one cavity

Basic cavity Parameters for Injector at KEK

Frequency	1.3	GHz
Number of Cell	2	
R/Q	205	
Operating Gradient	14.5	MV/m
Number of Input coupler	2	
Coupler power	167	kW
Coupler coupling	3.3×10^5	
Number of HOM coupler	5	
Operating Temperature	2	K

Antenna-type HOM coupler

Loop-type HOM coupler Antenna-type HOM coupler

JLab Ampere-class Cavity

100 MeV High Gradient Module

Cryomodule development

High power tests are in progress

KEK-ERL model-2 Cavity

1) Cell shape is optimized to reduce HOM impedances

- >Iris diameter 80mm, elliptical shape at equator
- ≻Cell diameter 206.6mm
- 2) Eccentric-fluted beampipe

➤Suppress Quadrupole HOMs

- 3) Large beampipes mounted with RF absorber
 - Bempipe diameter 100mm and 120mm

Main parameters for the acceleration mode

Frequency	1300 MHz	Coupling	3.8 %
Rsh/Q	897 Ω	Qox Rs	289 Ω
Ep/Eacc	3.0	Hp/Eacc	42.5 Oe/(MV/m)

ERL Facilities

Proceedings of RuPAC 2006, Novosibirsk, Russia

AN UPGRADE OF SC LINAC AT KAERI TO ERL

A.V.Bondarenko, S.V.Miginsky, Budker Institute of Nuclear Physics, Novosibirsk, Russia B.C.Lee, S.H.Park, Y.U.Jeong, Y.H.Han, Korea Atomic Energy Research Institute, Daejeon, Korea

Used for

- T-wave generation
- Compton scattering X-ray production

BNL 0.5 Amp electron cooling ERL

Thomas Jefferson National Accelerator Facility

JLab 4th Generation IR/UV ERL Light Source

Energy Recovery Linac (ERL) CLASSE Background **CHESS & LEPP** Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department Cornell University, Ithaca, New York 14853-2501 smg26@cornell.edu CESR Tunnel Preliminary layout view of an ERL upgrade to CHESS in the present CESR tunnel. A new tunnel with a return loop will be added to CESR. Electrons are injected into superconducting cavities at (I) and accelerated to 2.5 GeV in the first half of the main linac then to 5 GeV in the second half. The green lines show 18 possible beamline locations. Electrons travel around the CESR magnets clockwise and re-enter the linac out of phase. Their energy is extracted and the spent electrons are then sent to the dump (D). *for the CLASSE Two superconducting linacs in one tunnel accelerate the electrons development team to 5 GeV. Person shown for scale. www.chess.cornell.edu **Cornell University** Cornell High Energy Synchrotron Source

ERL@CESR Overview 8-2-07

DEVELOPMENT OF A PROTOTYPE MODULE FOR THE ERL SUPERCONDUCTING MAIN LINAC AT KEK

 T. Furuya, K. Hara, K. Hosoyama, Y. Kojima, H. Nakai, K. Nakanishi, H. Sakai, K. Umemori, KEK, Tsukuba, Ibaraki 305-0801, Japan, M. Sawamura, JAEA, Tokai, Naka, Ibaraki 319-1195, Japan, K. Shinoe, ISSP, University of Tokyo, Kashiwa, Chiba 277-8581, Japan

 Very important research for compact, efficient design and high brightness transport of beams
 High Energy Accelerator Research Organization, KEK
 Miho Shimada and Yukinori Kobayashi

TUPPO017

BERLinPro - A PROTOTYPE ERL FOR FUTURE SYNCHROTRON LIGHT SOURCES

M. Abo-Bakr, W. Anders, T. Kamps, J. Knobloch, B. Kuske, O. Kugeler, A. Matveenko, A. Meseck, A. Neumann, T. Quast

Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Berlin, Germany

PKU ERL FEL Facility

ALICE Facility @ Daresbury Laboratory

Accelerators and Lasers In Combined Experiments

superconducting ERL-prototype operating in ER mode since 2008

ALICE Plans

- Continued commissioning of IR FEL towards lasing
 - Machine operation with increased bunch charge, RF improvements & optimisation, electro-optic bunch length diagnostics
- EMMA first demonstration of acceleration in non-scaling FFAG
- THz dedicated beamline
 - Living cells exposures in dedicated tissue culture lab
- Microbunching experiments
 - Using THz source from converted tWatt Laser.
 - Transverse effects to be studied in compressor and return arc.
- Digital low-level RF upgrade (improved phase and amplitude stability)
- Linac cavity/cryomodule upgrade for CW ER operation
 - Collaboration with Cornell, Stanford, LBNL, FRZ Rossendorf
- Gun upgrade
 - Load-lock system for improved cathode replacement system

CW Linac X-FELS

- Higher energies => longer linacs => higher cost
- More FELs/linac is better
 - Multiplicity by way of RF separation (a la CEBAF)?
- **Recirculation** may make systems more affordable
 - Cuts required srf length
 - Cuts conventional facility (tunnel)
 - Cuts cryogenic plant
 - Cut s operating cost

CW Linac X-FELS

- Recirculation may make systems more affordable
- Key issue: can you still achieve ultimate beam brightness? Will require extensive study and creative design to ensure beam quality preserved, optimum cost/benefit achieved.

Solution of recirculation physics issues of high brightness beams may have even more important impact on field than ERL!

ARC-EN-CIEL phase 3:

JLAMP FEL proposal for unparalleled average brightness of 10-100 eV photons

- 600 MeV, 2 pass acceleration
- 200 pC, 1 mm mrad injector
- Up to 4.68 MHz CW repetition rate
- Recirculation and energy recovery
- 10 nm fundamental output, 10 nm/H harmonic
- 50 fs-1000 fs near-Fourier-limited pulses

Addresses open questions about recirculation...

- Baseline: seeded amplifier operation using HHG
- HGHG amplifier + oscillator capability
- THz Wiggler for synchronized pump/probe

CW operation gives high average brightness in both fundamental and harmonics

Thomas Jefferson National Accelerator Facility

Summary

- ERLs offer many advantages over existing X-ray sources
 - CW beams of very high brightness
 - Flexible format very short pulses
 - Small emittance and round beams
 - Capability for synchrotron emission or FEL operation or both
- but have some as yet unresolved issues
 - CW injectors at ultimate brightness
 - Transport challenges in maintaining brightness and handling beam
 - Cost and practicality challenges due to lack of multiparticle (longitudinal) coherence
- Can recirculating linacs address cost barrier to CW X-FEL facilities???

Acknowledgements

Special thanks to

- G. Williams, D. Douglas, C. Hernandez-Garcia and the JLab FEL Team
- Ilan Ben-Zvi and colleagues
- S. Gruner, G. Hoffstaetter and colleagues
- J. Bisognano and colleagues
- J. Knobloch and colleagues
- K. Baptiste and colleagues
- W. Eberhardt
- P. Dehmer
- S. Smith and colleagues
- K. Umemori and colleagues
- H. Hajima and colleagues
- Lu Xiangyang and colleagues
- Marie Couprie and colleagues
- and probably others I've missed in this list

Thanks for the use of their slides

