

Overview of Proposals for major FEL Facilities

Hans-H. Braun, PSI

XXV International Linear Accelerator Conference, Tsukuba September 13-17, 2010

FELs in operation or under construction

Project	Status	First Lasing	T _{e-}	λ _{min}	Main Linac technology	Overall length
FLASH	running	2005 (2000 TTF)	1.2 GeV	45 Å	Pulsed SC 1.3 GHz	315 m
LCLS	running	2009	14. 3GeV	1.5 Å	Pulsed NC 2.85 GHz	1700 m
FERMI@ELETTRA	construction	2010	1.5 GeV	40 Å	Pulsed NC 3.0 GHz	375 m
SCSS	construction	2011	8 GeV	1 Å	Pulsed NC 5.7 GHz	750 m
European XFEL	construction	2015	17.5 GeV →14 GeV	1 Å →0.5 Å	Pulsed SC 1.3 GHz	3400 m

LCLS Parameters

	Undulator Type	planar NdFe:B	planar NdFe:B	
	Wavelength	15	1.5	A
	Norm. RMS Emittance	1.2	1.2	mm mrad
	Peak Current	3.4	3.4	kA
A stand of the sta	Electron Energy E	4.54	14.35	GeV
A CONTRACT OF A	Average b -Function	7.3	18	m/rad
	s E/E (X-rays)	0.47	0.13	%
	Pulse Duration (FWHM)	230	230	fs
LCLS	Pulses per macropulse	1	1	
The Linac Coherent Light Source (LCLS) is transforming the face of	Repetition Rate	120	120	Hz
SLAC. For more than 40 years, SLAC's two-mile long linear accel-	Undulator Period	3.0	3.0	cm
erator has produced cutting edge physics.	Peak Field	1.32	1.32	T
Now, scientists will continue this tradition of discovery using the final	FEL parameter r	1.45	0.50	10-3
third of SLAC's linac to create an entirely new kind of laser.	Power Gain Length	1.3	4.7	m
	Saturation Length	27	86	m
	Peak Power	19	8	GW
	Average Power	0.61	0.25	W
	Coherent Energy per Pulse	2.6	2.3	mJ
	Coherent Photons per Pulse	27.9	1.1	10 ¹²
	Peak Brightness	0.64	8.5	1032 **
and the states and th	Average Brightness	0.2	2.7	10 ²² **
	Transverse RMS Photon Beam Size	40	33	μm
10 April 2009	Transverse RMS Photon Beam Divergence	3.4	0.42	μrad
	* photons/(s,mm ² ,mrad ² ,0.1%BW)			

Line;

The World's First Hard X-ray Free-Electron Laser

LCLS results (courtesy P. Emma/SLAC)

Undulator Gain Length Measurement at 1.5 Å

FLASH results (courtesy B. Faatz/DESY)

First Lasing at 4.45 nm on June 6/7 (with 3rd harm.)

FLASH Free-Electron Laser in Hamburg

Lessons from LCLS and FLASH for future projects

- Principle of SASE FEL works from VUV to hard X-ray regime
- State of the art FEL Theory and Design tools give also for this wavelength range reliable predictions.
- It is definitely not easy, but at least we know now what the difficulties are
- There are enough users out there for many FELs in this wavelength range

SCSS (courtesy T.Shintake)

Lessons expected soon from next facilities coming online

SCSS

- 8 GeV is sufficient for lasing at 1 Å
- C-band technology is a good choice for compact FEL driver linacs
- Small period, in-vacuum PM undulators are a good choice for compact hard X-ray FELs

FERMI@ELETTRA

- Principle of HGHG seeding works at nm wavelength range
- Polarization control with Apple II undulators works for soft X-ray FELs

Rational for future X-ray FELs

Worldwide >50 SR storage rings with ≈1000 user stations total

- wide range of applications in many disciplines of science for high brightness X-ray photon sources
- there was so far no other X-ray photon source of similar brightness

Potential X-FELs vs. SR storage rings

- + much higher peak brightness
- + higher average brightness
- + much better time resolution
- + much better coherence
- + more jobs for linac builders

Difficulties X-FELs vs. SR storage rings

- less photon flux
- less beamlines/facility
- much higher cost per user station

World map of SR storage rings

How to overcome "difficulties" X-ray FELs vs storage rings

Approach A)

Reduce cost/facility by reducing facility size

- Lowest beam energy technically possible
- Small period undulators with low K values
- Low bunch charge q_B
- High gradient
- Normal conducting, high frequency linac

How to overcome "difficulties" X-ray FELs vs storage rings cont.

Approach B)

Increase number of user stations and photon flux per user station

- 1kHz-1MHz bunch repetition rate
- Distribute beam on many FEL beamlines

 \Rightarrow Super conducting linac with c.w. operation

Proposals for new X-FEL facilities

		Project	Status	T _{e-}	λ _{min}	Main Linac technology	Overall length
ſ	-	SPARX	design report	2.4 GeV	5 Å	Pulsed NC 2.85 or 5.7 GHz	500 m
Approach A) Shangha MAX IV		SwissFEL	design report	5.8 GeV	1 Å	Pulsed NC 5.7 GHz	715 m
		PAL XFEL	design in progress	10 GeV	0.6 Å	Pulsed NC 2.85 or 5.7 GHz	900 m
		Shanghai XFEL	design in progress	6.4 GeV	1 Å	Pulsed NC 5.7 GHz	600 m
		MAX IV FEL	optional extension of MAX IV 3.5 GeV linac	?	?	Pulsed NC 2.85 GHz	?
Approach		NLS	design report	2.25 GeV	12 Å	C.W. SC 1.3 GHz	700 m
B)		NGLS	design in progress	2.4 GeV	12 Å	C.W. SC 1.3 or 1.5 GHz	?
		BESSY soft X-ray FEL	design report	2.3 GeV	12.4 Å	C.W. SC 1.3 GHz	450 m

www.sparx-fel.eu

courtesy M. Ferrario/INFN

Ministero dell'Università e della Ricerca

Free Electron Laser ranging from 40 nm a 0.5 nm 4 different Beamlines with dedicated experimental stations Peak Brillance: 10²⁷ sec.mrad².mm.0.1 % BW – 80-200 fs pulses Site : Università di Roma Tor Vergata Costruction of the 500 m tunnel: 2010 - 2014

> •Time-resolved X-ray techniques •Coherent x-ray imaging •Spectromicroscopy •Structural studies of biological systems, allowing crystallographic studies on biological macromolecules

www.sparx-fel.eu

Radiation parameters of the FEL sources

Electron bed	im parame	ter l	ist		
Energy	(GeV)	Е	1÷1.5	2.4	
Peak current	(kA)		1	2.5	CI.
Normalized transverse emittance slice	(µm)	έ]	1	1	
Correlated energy spread	(%)	σ_{δ}	0.1	0.1	ei
Photon Radiation wavelength	(nm)	λ	40÷3	3÷0.6	W
		-			

	Units	U1	U2	U2	U3
Electron beam energy	GeV	0.96-1.5	0.96-1.5	1.9-2.4	1.9-2.4
Wavelength	nm	40-10	15-4	4-1.2	1.2 - 0.6
Photon Energy	eV	30-120	80-300	300-1000	1000-2000
Peak power	GW	1.7-3.4	~2	3-20	0.8@2.4GeV
Average power	W	-	0.1-0.2	0.03-0.1	-
Photon beam size (FWHM)	μm	~140	~150	~130	~120
Photon beam divergence (FWHM)	µrad	33	25	19	17
Bandwidth (FWHM)	%	0.2	0.2-0.1	0.15-0.1	0.09@2.4GeV
Pulse duration (FWHM)	fs	200	30-250	70-30	70-80
Repetition rate	Hz	100-50	100-50	100-50	100-50
Number of photons per pulse	#	1.0*1014	1.5- 8.5*10 ¹³	5*10 ¹²	0.5-1.5*1012
Peak brilliance'		~	1 028	:	≈10 ²⁷
Average brilliance		~	1 020	:	≈10 ¹⁹

* standard units:

Number of photons (sec-mrad²-mm²·0.1 % BW). Mean values have been considered for the different cases.

Aramis:	1-7 Å hard X-ray SASE FEL, In-vacuum , planar undulators with variable gap.
Athos:	7-70 Å soft X-ray FEL for SASE & Seeded operation.

APPLE II undulators with variable gap and full polarization control.

D'Artagnan: FEL for wavelengths above Athos, seeded with an HHG source. Besides covering the longer wavelength range, the FEL is used as the initial stage of a High Gain Harmonic Generation (HGHG) with **Athos** as the final radiator.

PAUL SCHERRER INSTITUT

SwissFEL key parameters

First existing part of SwissFEL: 250 MeV Injector

Characteristics of PAL XFEL

courtesy W. Namkung/PAL

- Due to the limitation of available space & budget,
- 10 GeV beam energy for short Wavelength (0. 1 nm / 0.06 nm)
- High Accelerating Gradient in Linac: 30 MV/m
- Short-period in-vacuum undulator with small gap
- Atto-second Hard X-ray Scheme

Schematic Layout of the PAL XFEL

Layout of Shanghai XFELs

courtesy Zhentang Zhao/SINAP

Parameters of Compact XFEL

Electron beam parameters					
Energy/GeV	6.4				
Peak current/kA	3				
Bunch charge/pC	250				
Normalized slice emittance/mm-mrad	0.4				
RMS slice energy spread	0.01%				
Full bunch length/fs	100				
Undulator parameters					
Period/cm	1.6				
Segment length/m	4.8				
Full undulator length	70				
Peak undulator field/T	0.93				
К	1.4				
Gap/mm	6				
Average beta function/m	20				

FEL parameters					
Radiation wavelength/nm	0.1				
ρ	3.41e-4				
Peak coherent power/GW	10				
Peak brightness/*	2e33				
Pulse repetition rate (Max.)/Hz	60				
3D gain length/m	2.156				
Saturation length/m	50				

Roadmap of Shanghai FELs

NLS Facility Layout

The UK's New Light Source (NLS) Project

Phase I FEL Performance:

	FEL1	FEL2	FEL3
Photon energy	50 - 300 eV	250 - 850 eV	430 - 1000 eV
Seeded/SASE	seeded*	seeded*	seeded*
Pulse length (FWHM)	20 fs	20 fs	20 fs
Peak power	6 - 12 GW	1.7 - 5 GW	1.5 - 4 GW
Polarization	variable	variable	variable
Rep. rate	1 kHz	1 kHz	1 kHz

Future Phases:

and increased photon energy Down to ~ 450 as with single spike

Additional FELs

or slicing

Up to 1 MHz with 2nd stage gun

*for reproducibility of pulses, longitudinal coherence and synchronisation with conventional laser sources (60 meV-50 eV)

More: http://www.newlightsource.org/

NGLS Facility Performance Goals

	Parameter	Value	Unit	
BESSY soft X-rav FEL	Number of FEL lines	3		
	Number of beamlines	9 (15)#		
	Electron beam energy	2.3	GeV	
	Electron beam emittance	1.5	π mm mrad	
	Electron bunch length [†]	290	μm	
	Electron peak current	1.75	kA	
	Total beam power	18* (150)	kW	
	Wavelength range	51 - 1.24	nm	
	Photon beam peak power	1.5 - 14	GW	
	Photon beam average power	0.260 - 0.016 * (2.0 - 0.12)	W	
	Photon beam size (fwhm)	14 - 160	μm	
	Photon beam divergence (fwhm)	37 - 140	µrad	
	Photon beam spec. bandwidth	~ 0.001		
	Photon beam pulse duration	≤ 20	fs	
	Min. pulse separation	2	μs	
	No. of pulses in a train	$3^{*}(1)^{\$}$		
	Repetition rate	1000* (>25000)	Hz	
	Number of photons per pulse	$2.10^{11} - 7.10^{13}$		Electric supply
	Average flux of photons	$2.10^{14} - 7.10^{16}$		Cooling water
	Peak brilliance	6.4·10 ²⁹ - 1.3·10 ³¹	ph/(s·mrad ² ·mm ² ·0.1% bw)	Cryoplant
				Auxiliary systems
	*			\sim
Beamdump	LN2 Storage	Holen	VT2	
		The Storage	Offices / Labo	
		Cold-	Labs	
		box Beamdump		
Experimental hall			COLORED COLOR	
	Linac- / Lind			
	indulate	or - tunnel	togin	
		0	laying area	11

RF gun state of the art

 $\varepsilon_N \approx 1 \ \mu m \ q_B^{\gamma_2}$ (with q_B in nC)

LCLS/SLAC

PITZ/DESY

Reduction of intrinsic emittance with laser wavelength tuning

Fig 4. Normalized projected emittance versus laser spot size for 3 different wavelengths on copper. (Q < 1 pC; solenoid scan method, Cu insert). Theory corresponds to Eq. 1 assuming Φ_{Cu} =4.3 eV (thermal effects not included).

C. Hauri et al., Phys. Rev. Lett. 104, 234802 (2010)

Injector concepts for c.w. FELs

A High Rep-rate VHF Cavity Electron Gun

1	DNI		
NEG modules	DINL	Frequency	187 MHz
	_	Operation mode	CW
	Tuner plate	Gap voltage	750 kV
	-	Field at the cathode	19 MV/m
	Boam ovit	Q ₀	30887
Solenoid	port	Shunt impedance	6.5 MΩ
Cathode		RF Power	90 kW
injection/extraction		Stored energy	2.3 J
	Cathode	Peak surface field	24 MV/m
		Peak wall power density	25 W/cm ²
		Accelerating gap	4 cm
RF Couplers	=	Diameter/Length	70/35 cm
		Operating pressure	<10 ⁻¹¹ Torr

-
in the second
BERKELEY LAB
J. Corlett July 2010

Table 2: Measurement Results and Designed Parameters of the FZD SRF Gun

		Designed	
IPAC 10 measured		FEL mode	high charge mode
Max. energy	3 MeV	3 MeV	
peak field	17.6 MV/m	18 MV/m	
laser rep. Rate	1-125 kHz	13 MHz	2-250 kHz
laser pulse length (FWHM)	15 ps	4 ps	15 ps
laser spot size	1~6 mm	5.2 mm	5.2 mm
bunch charge	\leq 300 pC	77 pC	400 pC
average current	18 µA	1 mA	100 µA
peak current	20 A	20 A	26 A
transverse rms	3±1	2	7.5
emittance	mm∙mrad @ 80 pC	mm∙mrad	mm∙mrad

Cost comparison linac technologies or Why doesn't everybody take s.c. & c.w.

Technology	Linac investment cost w/o building	Typical gradient	Electric consumption
Pulsed n.c. with SLED	<10 M€/GeV	20 MV/m (S-band) 30 MV/m (C-band)	0.5 MW/GeV
Pulsed superconducting	≈20 M€/GeV	24 MV/m	0.5 MW/GeV
c.w. superconducting	? 30 M€/GeV ?	15 MV/m	5 MW/GeV

Beware! This is not exact science !

cost optimization pulsed n.c. linac

Cost vs. gradient for S-band with 45 MW klystron,

Advantage of C-band is in real-estate needs and electricity consumption

cost optimization s.c. linac in c.w. mode from NLS design report

Relative total capital and 10-year operational linac costs

Effect of increased energy cost on Eacc optimisation over 10 years

Undulators

SCSS undulators λ_{U} =18mm

E_{el}= 8 GeV for 1 Å lasing

test sample: period: 9mm fixed gap: 2.5mm / 2.0mm 20 periods

HZB (BESSY) LMU Munich

effective fields:

2.5mm*: B_r = 1.18T K = 1.0 E_{el} = 4.2GeV for 1Å 2.0mm*: 1.43T 1.2 4.5GeV

*vacuum gap 0.2mm lower

J. Bahrdt et al., "Cryogenic Design of a PrFeB-Based Undulator," Proc. IPAC (2010)

Thank you for your attention!