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Basic Physics Research on RF breakdown

Study dependence of rf breakdown properties on
e Surface Processing Techniques

* Geometry

* Material

* Frequency Scaling

* Circuit

Theoretical developments

Goal: We want to understand and predict
breakdown behavior for practical structures



Experimental Studies of Basic RF

Breakdown Physics at 11 GHz
T53VG3 { A

(v, from 3.3% to 1.6% c)

Difficulties:

e Full scale structures are long,
complex, and expensive

Solution:

Short Accelerating Structures
e Single cell Standing Wave (SW) and Single
Cell Traveling wave (TW) structures with |

properties close to that of full scale
structures

e Reusable couplers

Pulsed Heating Cavity with easy-to-replace sampls :



Experimental Studies of Basic RF Breakdown

Physics at 11 GHz
* Single Cell Accelerator Structures

—standing-wave (SLAC, KEK, INFN-Frascati)
—traveling-wave (SLAC, KEK, CERN)

SW and TW structures

Bead-pull of TW structure



Reusable coupler: TM,, Mode Launcher

Pearson’s RF flange

Cutaway view of the mode launcher |
Two mode launchers

Surface electric fields in the mode launcher
E,...= 49 MV/m for 100 MW

S. Tantawi, C. Nantista






First Breakdowns #

Breakdown rate

We use a well defined parameter to characterize rf
breakdown behavior:
breakdown rate (# breakdowns/pulse/meter)

For reference, linear collider CLIC has to have <10/
breakdowns/pulse/meter
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Surface Processing

Dr. Yasuo Higashi
and Richard
Talley assembling
3C-SW-A5.65-
T4.6-Cu-KEK-#2

A special structure was
built and processed (with
best cleaning and surface
processing we can
master) at KEK and
hermetically sealed, then
assembled at SLAC at the
best possible clean
conditions




Two structures #1 processed normally and #2 processed similar
to superconducting accelerator structures
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The near perfect surface processing affected only the processing
time: the ultra-clean structure was processed in our system in 2.4 10°
pulses with an accumulated 260 breakdowns in contrast to a 5 10°
minutes and an accumulated 2000 breakdowns for the normal
structure.



Reproducibility of Ultiamate Breakdown
Properties for Brazed Copper Structures

Accelerator structures manufactured by ~ Accelerator structures manufactured
different laboratories with different grades of copper purity
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Reproducibility

We found that ultimate breakdown rate is reproducible
among structures of the same geometry and material.

Practical consequences:

*Because of this reproducibility we can interpolate
breakdown performance data to new geometries. We
found that extrapolation of the data is often invalid.

*To predict the breakdown rate a physical model of
breakdown performance should have structure drawings
and material properties as main (and may be only) inputs.



Dependence of Gradient on Geometry

Surface Electric Field vs. Surface
Magnetic Field



Three Single-Cell-SW Structures of Different Geometries

1)1C-SW-A2.75-T2.0-Cu

Geometrical Studies

r [em]

1.50

1.25

1.00

©
N
a

- WH'HH’H !‘HH‘HH'HH'\

0.50

0.25

0.00

o, i\\~i\\i~\iii‘iii\‘i\ iiHHi\




shapes; a/A =0.215, a/A =0.143, and a/A =0.105

BreakdowrProbability 1. pulse meter

BreakdowrProbability 1, pulse meter

10°

Geometrical Studies

Different single cell structures: Standing-wave structures with different iris diameters and
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Geometrical Studies
Two Single-Cell-SW Structures with same magnetic but
different electric fields

2) 1C-SW-A3.75-T2.0-Cu 4) 1C-SW-A3.75-T1.66-Cu
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BreakdowrProbability 1. pulse meter

BreakdowrProbability 1, pulse meter
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Geometry plays a major role in determining the
accelerating gradient and breakdown performance:

Local electric field seems to have less importance
than magnetic field in disk-loaded-waveguide type
SW structures



Geometrical Studies

TW vs. SW with Breakdowns in One
Cell



Geometrical
studies

TW vs. SW: at low

breakdown rate <5 *10~>/per
pulse/meter (<10 per hour@60Hz)
the statistical behavior of the SW
and low group velocity TW
structures is very similar but TW
structures has ~20-30% lower
gradient and about 2 times lower
peak pulse heating.

Breakdown rate vs. gradient and
pulse heating for one SW and two
TW structures with ~¥~3mm aperture
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BreakdowrProbability 1, pulse meter

Pulse Length Dependence
Peak Pulse Heating correlate better with breakdown rate

than peak magnetic field
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RF Magnetic Fields and Pulse Heating

e Experimental and theoretical evidence points to the rf magnetic field as an
important factor in determining the breakdown behavior in given structure.

— Magnetic field can be responsible for:
e Geometrical effects
e Effective field enhancement
e Extreme heating of small metal particles (model of exploding copper dust)

— Surface fatigue may contribute to the low statistics phenomena of
breakdown: why a breakdown occurs after thousands and millions of quiet
pulses.

e Surface fatigue is particularly important in areas where peak magnetic field is
enhanced and can cause damage, such as in coupling slots for wakefield damping

*V. A. Dolgashev and S. G. Tantawi, RF Breakdown in X-band Waveguides, EPAC'02, 2002, Paris, France
V. A. Dolgashev, High Magnetic Fields in Couplers of X-band Accelerating Structures, in Proc. of IEEE
PAC 2003, Portland, Oregon, 2003, pp. 1267-1269, SLAC-PUB-10123.

*G. S. Nusinovich D. Kashyn, and J. T. M. Antonsen, Possible Role of RF Melted Microparticles on the
Operation of High-Gradient Accelerating Structures, Phys. Rev. ST Accel. Beams 12, 101001 (2009).

*A. Grudiey, S. Calatroni, and W. Wuensch, New Local Field Quantity Describing the High Gradient Limit
of Accelerating Structures, Phys. Rev. ST Accel. Beams 12, 102001 (2009).

*A. Pohjonen, F. Djurabekova, K. Nordlund, and S. Fitzgerald., Dislocation Nucleation on Near Surface
Void Under Tensile Stress in Cu, in CERN Breakdown Physics Workshop, May, 2010.



Material Testing

Pulse Heating Cavity Experiments



Material Testing ( Pulsed Heating Experiments)

Pulse heating cavity

*Lisa Laurent, MOPO076
*S. Heikkinen, Study of High Power RF Induced Thermal Fatigue in the High Gradient Accelerating
Structures, Ph.D. thesis, Helsinki University of Technology, Finland (2008).



Material Testing ( Pulsed Heating Experiments)

TEy;5-like mode (no
surface electric fields)

|E| e

terial
materia =098
sample

Special cavity has been designed to focus
the magnetic field into a flat plate that
can be replaced.

S. Tantawi, C. Nantista



Pulse Heating Sample

Pulse heating ring,
peak temperature 110 deg.

w, L

Sample manufactured by Y. Higashi, KEK



Pulse Heating Damage Strongly Depends on Crystal Grain
Orientation and Starts at Grain Boundaries
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50 deg. C,
damage

~110 deg. C,
no damage

L. Laurent



Inter-granular fracture Pulse Heating Damage
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L. Laurent



Pulse Heating Test Samples

(3 P

HIP2 Copper (KEK) HIP1 Copper (KEK)

CuCr Annealed (SLAC) Single Crystal Cu (KEK)

CuZr Cold Worked (CERN) Copper Silver (SLAC)

Copper Silver (KEK) CuCr Non-Annealed (SLAC) Glidcop (CERN)

L. Laurent, MOPO076
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Material Tests

Trials of diffusion
bonding and brazing of
CuZr at SLAC.

Culr
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Material Tests Without Brazing
Clamped Structure

Clamping Structure for testing accelerating structures made of copper alloys

*The clamped structure will provide a method for testing materials without the need to
develop all the necessary technologies for bonding and brazing them.

*Once a material is identified, we can devise constriction methods to building structures.
*Furthermore, it will provide us the opportunity to test hard materials without annealing
which typically accompany the brazing process



BreakdowrProbability 1. pulse meter

Material Tests
Hard Copper

Clamped Structure with Hard
Copper cells

Hard Cu
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Next Steps

In Situ Observation of
Microscopic Surface
Properties



In-Situ Observation of Metal Surface (KEK, SLAC)

e Crystal migration due to pulse heating
— Interferometer (ready)
— High resolution microscopy (ready)
* Pulse temperature measurement by High-Speed Radiation
Thermometer (under development)
* Particles observation by Laser scattering (under development)

SW structure New pulse heating cavity



Summary

This work is done by a strong international collaboration. This is the only way to
gather the necessary resources. New participants are welcome.

Short SW structures have higher gradient then short TW structures for the same
aperture and breakdown rate.

Geometry and material are determining ultimate rf breakdown behavior in short
SW structures.

Peak rf magnetic field has stronger effect on the rf breakdown then peak electric
field which contradicts commonly accepted model of the rf breakdown.

When soft copper is exposed RF magnetic field alone some grain boundaries show
signs of damage at about 50 deg. C pulse heating.

Pulse heating damage in hard metals is strongly suppressed which consistent with
models of stress induced fatigue.

Breakdown behavior of hard materials is different from soft materials which
suggest connection between the fatigue and the breakdown trigger.

We started building and debugging experimental setups that may allow in situ
microscopic observation of metal surface.

We designing cavities in which we decouple rf magnetic and rf electric fields.



