Progress of X-Band Accelerating Structures

LINAC10, Tsukuba 17 Sep. 2010 T. Higo (KEK)

Contents

- Evolution in 20 years
- Judgment with breakdown rate
- Supplemental high-gradient studies
- Effort with parameter optimization for stable high gradient
- Effort with other HOM damping scheme
- Efforts in fabrication technology
- X-band collaboration

Evolution of LC structures in 20 years

LINAC94 at Tsukuba "Linear Collider Structures" 16 years ago, the beginning

On the other hand, traveling-wave <u>S-band</u> structures were studied at KEK[27]. They obtained the maximum field of <u>91MV/m in 0.6m-structure</u>. There is no evidence that this is a breakdown limit, though. What should be

A <u>7-GHz</u> standing-wave structure was high power tested up to <u>90MV/m for VLEPP</u> in 1978.

High field test on traveling wave structures at X-band aiming at the feasibility check for the linear collider use have been performed at SLAC[29] and KEK[28]. The typical parameters are summarized in the Table 1. The obtained field levels are not necessarily limited by the structures themselves. It is fairly easy to reach a stable operation at 50MV/m level without measurable dark current. The accelerating field of even 100MV/m can be reached without severe conditioning but with a dark current of the order of mA. The behavior of this dark current in the realistic structures should be performed from now.

TARIE 1

High-Field Experimental			ental	Results			
Length(m)	0.2	0.26	0.26	0.75	1.8		
Type Maker	CI CERN	CI CERN	CI SLAC	CI SLAC	Detuned SLAC		
						Input (MW)	39
Eav (MV/m)	100	125	101	79	55		
Pulse (ns)	100	150	60	75	75		
Fill Time (ns)	58	74	27	52	100		
	High- Length(m) Type Maker Input (MW) Eav (MV/m) Pulse (ns) Fill Time (ns)	High-FieldLength(m)0.2TypeCIMakerCERNInput (MW)39Eav (MV/m)100Pulse (ns)100Fill Time (ns)58	High-FieldExperimLength(m)0.20.26TypeCICIMakerCERNCERNInput (MW)3969Eav (MV/m)100125Pulse (ns)100150Fill Time (ns)5874	High-Field Experimental Length(m) 0.2 0.26 0.26 Type CI CI CI Maker CERN CERN SLAC Input (MW) 39 69 116 Eav (MV/m) 100 125 101 Pulse (ns) 100 150 60 Fill Time (ns) 58 74 27	High-FieldExperimentalResultsLength(m)0.20.260.260.75TypeCICICICIMakerCERNCERNSLACSLACInput (MW)3969116130Eav (MV/m)10012510179Pulse (ns)1001506075Fill Time (ns)58742752		

Discussed 100 MV/m level.

VLEPP based on 100 MV/m in LC91

CERN made 20cm vg/c=1% structure tested up to 100 MV/m in early 90's

90 MV/m with SLED at KEK >100 MV/m at SLAC

DDS scheme was confirmed in mid. 90's sharp edges in its cells \rightarrow no high gradient test

Many of the HDDS 60cm structures were made and tested in collaboration among SLAC, FNAL and KEK in late 90's till 2004

Unloaded 65 MV/m was established in wake-field suppressed structures. These opened a base which extended to → CLIC 100 MV/m design choice → medium-gradient applications

Series of CLIC test structures made as twins Targeting 100 MV/m In collaboration among CERN, SLAC and KEK

Nominal test procedure

Three existing test facilities and one under construction at CERN

3

Judgment with breakdown rate

Power fit can be done with the same power for all gradients

2010/9/17

A. Grudiev, Dec. 2008

Alexej Grudiev, New RF Constraint.

Possibility of 65 \rightarrow 100 MV/m BDR: promising result in CLIC prototype structure

BDR of CLIC prototye but undamped structures T18 tested at SLAC T18 tested at KEK T18 SLAC 2 Breakdown rate for 252ns and 412ns **BKD** Rate for 230ns 10⁻⁴ -10-4 500hrs BDR (ACC) 252ns BDR (ACC) 252ns [1/pulse/m] 10⁻⁵ 900hrs 10⁻⁵ 250hrs BDR (ACC) 10⁻⁶1 1200hrs 10⁻⁶ 5. 2958e-61 $* x^{(27.542)}$ R= 0. $= 2.1053e-60 * x^{(26.721)}$ R= 0. 10⁻⁷ 10⁻⁷ 85 95 100 100 105 110 115 90 105 110 115 120 95 80

1. A pair of the same structures are tested in different laboratories.

Eacc [MV/m]

- 2. Both agrees after nominal processing period.
 - 3. BDR decreases as processing proceeds.
- 4. Not yet completely stable. Need study more.

Unloaded Gradient: MV/m

BKD Rate: 1/pulse/m

BDR: Undamped T18 \rightarrow Damped TD18

Sensitive to Eacc (Es, Hs) ~ X5~10 / 5 (MV/m)

BDR(damped) ~ 100 X BDR (undamped)

To be studied! Damped structure: High ∆T Any other mechanism?

BDR versus RF width or ΔT (pulse heating)

TD18_Disk_#2 BDR versus pulse width

Similar correlation with pulse width.

TD18 Disk #3 BDR versus ΛT (pulse temperature rise) 10 - T18, 900 hrs - TD18, 100 MV/m @ 100ns,870hrs TD18, 100MV/m@ 150ns, 960hrs TD18, 100MV/m@200ns, 750hrs TD18, 115MV/m@150ns, 550hrs TD18, 120MV/m@150ns, 570hrs 10 TD18, 100MV/m@230ns, 700hrs BDR (1/pulse/m) TD18, 105MV/m@230ns, 680hrs Damped 10⁶ Undamped 10^{-⁵}∟ 20 30 40 50 80 90 100 60 70 Peak Pulse Heating at Last Cell (K)

Tight correlation with pulse temperature rise. Same at 100MV/m but pulse length $\rightarrow \Delta T$ Same $\Delta T 83^84$ degC but diff. Eacc

Supplemental high-gradient studies

- DC arc at CERN → Calatroni морото, Yokoyama морот5
- Waveguide RF at SLAC and KEK
- Single-cell SW at SLAC → Valery talk FR105
- Pulse heating at SLAC → Laurent MOP076
- CZ 10-cell setup at SLAC

Some of these are presented in the following talk by Valery

Breakdown rate for 5 single cell SW structures

Valery, 100613 AAC

1C-SW-A2.75-T2.0-Cu-SLAC-#1 (green empty diamond), 1C-SW-A3.75-T1.66-Cu-KEK-#1 (black solid circle),

1C-SW-A3.75-T2.6-Cu-SLAC-#1 (blue empty triangle), flat part of the pulse 200 ns, and

1C-SW-A5.65-T4.6-Frascati-#2 (red empty circle), and 1C-SW-A5.65-T4.6-Cu-KEK-#2 (red full diamond)), flat part of the pulse 150 ns

Effort with parameter optimization for stable high gradient

Grudiev, 100621 at FNAL

Compilation RF constraints: data analysis 1

		dphi		
	RF design name	f [GHz]	[deg]	vg1 [%]
1	DDS1	11.424	120	11.7
2	T53VG5R	11.424	120	5
3	T53VG3MC	11.424	120	3.3
4	H90VG3	11.424	150	3
5	H60VG3	11.424	150	2.8
6	H60VG3R18	11.424	150	3.3
7	H60VG3R17	11.424	150	3.6
8	H75VG4R18	11.424	150	4
9	H60VG4R17	11.424	150	4.5
10	HDX11-Cu	11.424	60	5.1
11	CLIC-X-band	11.424	120	1.1
12	T18VG2.6-In	11.424	120	2.6
13	T18VG2.6-Out	11.424	120	1.03
14	T18VG2.6-Rev	11.424	120	1.03
15	T26VG3-In	11.424	120	3.3
16	T26VG3-Out	11.424	120	1.65
17	TD18_KEK_In	11.424	120	2.4
18	TD18_KEK_Out	11.424	120	0.9
19	SW20A3p75	11.424	180	0
20	SW1A5p65T4p6	11.424	180	0
21	SW1A3p75T2p6	11.424	180	0
22	SW1A3p75T1p66	11.424	180	0
23	2pi/3	29.985	120	4.7
24	pi/2	29.985	90	7.4
25	HDS60-In	29.985	60	8
26	HDS60-Out	29.985	60	5.1
27	HDS60-Rev	29.985	60	5.1
28	HDS4Th	29.985	150	2.6
29	HDS4Th	29.985	150	2.6
30 0	PETS9mm	29.985	120	39.8

RF constraints: data analysis 2

Data has been scaled to tp=200 ns BDR=1e-6 bpp/m

Crudiay 100621 at ENAL

From Grudiev, May 2010 4th WS at CERN

Unloaded 100MV/m

From Grudiev, May 2010 4th WS at CERN

Acc mode parameters TD18 \rightarrow TD24

Tested

To be tested

Both Sc and ΔT decreased by taking cell parameter optimization

2010/9/17

25

Effort with other HOM damping scheme

Consists of rods, quads or halves

gradient performance.

20.4

0.00

DDS scheme for CLIC Fabrication test was started. May evaluate high gradient performance and wake field.

Choke-mode design

Design with choke mode

CLIC collaboration with Asia Design in collaboration with Tsinghua U. High gradient test at KEK

Efforts in fabrication technology

• Before

- CERN: diamond-tool machining + vacuum brazing
- SLAC/KEK: technology hydrogen diffusion bonding + vac baking
- Present to future
 - Collaboration among three
 - CERN follows SLAC/KEK to understand
 - CERN-made T18 runs well, <2x10⁻⁷ BD/pulse/m (CLIC req.)
 - Technologies are developed which can be realized at multiple places

TD 26 (CONCEPTUAL DESIGN)

G. Riddone, 06/09/2010

Baseline procedure

Vacuum brazing versus hydrogen brazing

Hydrogen brazing

Vacuum brazing

Extensive program launched to improve our understanding on the influence of different thermal cycles on the copper surface

Higo, LINAC10, Tsukuba

Conclusion

• CLIC BDR requirement

- CLIC undamped structures T18 meet at 100 MV/m
- CLIC damped structures TD18 meet at 90 MV/m
- Need to confirm the long-term stability
- Important parameters were identified
 - Such as Sc and ΔT
 - New designs were made and to be tested in 2010
- Fabrication technology
 - SLAC/KEK scheme is being reproduced by CERN
 - Problems are identified to be improved
- X-band collaboration
 - Worldwide collaboration is expanding centered at CLIC but also in other applications