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had a matted appearance while other grains had a weave-
like appearance. The weave pattern is created by the 
crossing of transgranular fractures that terminate on grain 
boundaries (Fig. 5a). The grain with the matted surface is 
created by extrusions occurring through submicron size 
pits that form on the face of the crystal (Fig. 5b). It is 
speculated that the observed differences in types of grain 
damage may be due to a difference in crystallographic 
orientation. The outer edge and lower temperature region 
of the pulsed heating ring revealed that grain boundaries 
are typically the first location that is targeted.  
 

  
    (a)                   (b) 

Figure 5: (a) Transgranular extrusions oriented in 
different directions and terminating along grain 
boundaries creating a weave-like pattern and (b) 
extrusions through micropits.  
 
  There were two Cu chromium (C18200) samples that 
were tested and one was subjected to a 988oC vacuum 
braze cycle. The softer heat treated sample had 
significantly more surface damage than the one without 
heat treatment and most of the damage on the harder 
sample occurred along grain boundaries. A cold worked 
copper zirconium (CuZr) and an annealed copper 
zirconium sample were also tested. Remarkably, at a 
pulsed heating temperature of 110oC, there was no clear 
evidence of surface damage on the cold worked sample. 
This sample was retested to 150oC which resulted in a 
faintly visible pulsed heating ring. The softer annealed 
sample had significantly more surface damage in contrast 
to the harder cold worked CuZr sample. From the 
experiments that contained both soft and hard materials, 
the harder non-annealed materials substantially 
outperformed the softer materials. Although this may 
have been a likely outcome, it is problematic in the 
development of high power rf components that typically 
require a high temperature brazing cycle. 
  Two copper silver (C10700) samples were tested and 
neither one of them were subjected to heat treatment. The 
hardness of the CuAg sample was similar to the CuCr 
sample and the experimental results were similar showing 
that the surface damage was dominant along grain 
boundaries.  A 300μm silver plated Cu sample was also 
tested but the silver plating was severely damaged due to 
cracking and spalling.  
  The sample with the highest measured hardness value 
was Glidcop® Al-15 (C15715). Small striation lines of 
pulsed heating damage were observed around the pulsed 
heating ring that had the same orientation irrespective of 
location. The cause is unclear but may have been due to 

material defects, or surface imperfections created in the 
diamond fly-cutting process that was used. However, this 
process was also used on other samples and the striation 
pattern was not observed in any other experiment. Except 
for these small strips, the surface damage on the Glidcop® 
sample was minimal. 

CONCLUSIONS 
  This study has shown the possibility of pushing the 
gradient limits due to cyclic thermal fatigue by the use of 
copper zirconium and copper chromium alloys. 
Intergranular and transgranular extrusions were observed 
to varying degrees on all the samples tested to 110oC 
except for the cold worked CuZr sample which wasn't 
observed until after the 150oC test run. At low cyclic 
temperatures, grain boundaries were observed to be the 
initial sites impacted by pulsed heating. At higher cyclic 
temperatures (110oC), metallography revealed subsurface 
intergranular damage that extended 20-40μm’s below the 
surface on heat treated copper. A pulsed heating surface 
damage dependence on crystallographic orientation was 
determined using Electron Back Scattered Diffraction 
technology.  
  There were two types of surface damage observed on the 
grain surfaces. Transgranular surface extrusions oriented 
in different directions and terminating on grain 
boundaries which created a weave pattern appearance and 
the second type of damage observed was due to 
extrusions through micro-pits. It is speculated that the 
differences between these two may be due to a difference 
in crystallographic orientation.  
  In general, non-heat treated samples which had a higher 
material hardness and smaller grain size significantly 
outperformed the heat treated samples. This may be due 
to the small grain boundaries limiting the propagation of 
surface extrusions which terminated on grain boundaries. 
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