

Thomas Jefferson National Accelerator Facility

Scope/Agenda

High *Q_L* (> 10⁷) CW Superconducting Accelerating cavities supporting ERLs, Light sources or Nuclear Physics

- Introduction
- **Q**_L Optimization
- Cavity Field Perturbations
- Cavity Control Algorithms
- RF Control Hardware & Design
- Resonance Control
- Summary

Proposed Accelerators

Thomas Jefferson National Accelerator Facility

RF Control Challenges/Starting Points

- Required Field Control to meet accelerator performance: Proton/ion Accelerators: 0.5° and 0.5% Nuclear Physics Accelerators: 0.1° and 0.05% Light Source: 0.05° and 0.01%
- Loaded Q Optimized for beam loading: Nuclear Physics < 1 mA, Light Sources > 1 mA
- Microphonics & Lorentz Detuning: Determined by cavity/cryomodule design and background environment.
- Master Oscillator/Timing/Synchronization: Determined by application (light sources < 100 fs!).
- Accelerator Specific: Operational, Reliability/Maintainability Access etc.

Q_L Optimization for Minimum Power

Depending on the application (injector/LINAC or ERL) the cavity Q_L must be optimized for minimum power.

Beam Loaded Cavity Lightly-non beam loaded Cavity $Q_{Lopt} \cong f_o / 2\delta f$ $Q_{Lopt} \cong V / I_O(R / Q)$ 100000 25000 90000 **Cavity Detuning** Cavity Detuning 20000 80000 0 Hz 0 Hz 70000 -5 Hz 5 Hz 15000 60000 10 Hz 50000 10 Hz 10000 40000 -20 Hz 30000 5000 20000 10000 0 0 4.00E+06 4.00E+07 4.00E+06 4.00E+07 $I = 10 \ \mu A$ I = 1 mA

Thomas Jefferson National Accelerator Facility

Lorentz Detuning

• RF power produces radiation

pressures : $P = (\mu_0 H^2 - \varepsilon_0 E^2)/4$

• Pressure deformations produce a frequency shift :

 $\Delta f = K_L E^2_{acc}$

The Quadratic relationship with Gradient becomes an issue at the high gradients (15+ MV/m) needed for new accelerators

Cavity Microphonics

- Determines the *Feedback Gain* needed for control.
- Determines the Q_L and the klystron power for lightly loaded cavities

C100 HTB Cavity 7

Cavity Microphonics Cont.

Microphonic	C100	Renascence	What
Detuning*		stiffened	lf ??
RMS (Hz)	3.65	1.98	0.83
6σ(Hz)	21.9	11.9	5.0

Microphonic Impact on cavity power operating at 20 MV/m (100 mA of beam)

- C100 = 5.3 kW
- REN = 3.3 kW
- ??? = 2.0 kW

Potential for cost reduction

- Utility
- Power amplifier

Can we reduce microphonics even more?

RF System Modeling and Control Algorithms

Modeling

- CW accelerators can use simple proportional & integral feedback.
- Very good models exist of: Cavity: beam loading, detuning, Lorentz effects

After modeling, more often than

not, the control algorithm is a

Klystron : saturation

<u>Algorithms</u>

- Generator Driven Resonator (GDR)
- Self Excited Loop (SEL)

Block Diagram of the JLAB Cavity Control Model

Courtesy of T. Plawski

Thomas Jefferson National Accelerator Facility

Generator Driven Resonator vs. Self Excited Loop

<u>GDR</u>

- Advantages
 - Where fast/deterministic lock up times are critical

• Disadvantages

- High Q machines with high microphonic content and large Lorentz detuning could <u>go unstable</u>

<u>SEL</u>

- Advantages
 - High Q_L Cavities
 - Systems with large Lorentz detuning

• Disadvantages

- Slow lock up time

Control Algorithms: GDR

- IF direct I&Q sampling
- Digital filtering
- PID controller for I and Q values
- Rotation matrix
- Single DAC generating IF signal

N-stage cascaded integrator-comb (CIC) filter (decimator)

Control Algorithms: SEL

- IF direct I&Q sampling
- digital filtering

$$\begin{bmatrix} x', y' \end{bmatrix} = \begin{bmatrix} x, y \end{bmatrix} \cdot \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \longrightarrow \begin{cases} x_{i+1} = K_i \begin{bmatrix} x_i - y_i \cdot d_i \cdot 2^{-i} \\ y_{i+1} = K_i \begin{bmatrix} y_i + x_i \cdot d_i \cdot 2^{-i} \end{bmatrix}$$

Q

• I&Q to Phase&Magnitude - COordinate Rotation Digital Computer

- SEL mode
- Microphonics Compensation
- single DAC generating IF signal

Ι

Digital SEL Tests

SEL mode

- Detuned the cavity by +/- 50 kHz and RF system tracked it.
- RF turn on of the detuned cavity system works perfect, no excessive power needed!

Microphonics compensation

- Phase regulation: phase noise dropped from 1.2 deg RMS down to 140 mdeg RMS
- AM noise when compensator is ON is around 0.2 %. (w/o amplitude feedback)

0 to 20 MV/m in 6.5 ms!

RF Control Components

JLAB Upgrade RF Control System

Thomas Jefferson National Accelerator Facility

JLAB Upgrade RF Receiver

Thomas Jefferson National Accelerator Facility

Field Control: Amplitude

 Receiver S/N determines minimum residual amplitude control.

> Amplifiers Mixer ADC

• Linear components needed for stability and accuracy over large dynamic range.

It is possible to improve S/N, through process gain, but at the expense of control bandwidth and ultimately stability (latency).

Measured amplitude error vs. proportional gain for a digital receiver (14 bit). Over Sampling improved S/N from 74 dB to ~ 85 dB.

Field Control: Phase

- Highly dependent on the reference (LO/IF) and subsequent board level clock
- Linear components needed to minimize AM to PM contributions
- ADC aperture jitter ~ 100 fs
- Some ADC linearity can be improved with near quadrature sampling

Jitter/drift budget from MO to the beam needs to be completed.

Digital Signal Processing

- ADC to DAC Delay Estimate
- Simulation (both digital and model)
- Other Passband modes need to be filtered
- Klystron Linearization
- Tuner Controls
- Internal Cavity Interlocks (Quench)

Cavity Emulator using IIR Filter

Cavity Resonance Control

Slow Tuner

Stepper Motor:

- Recover cavity from large excursions associated with down time activities or CHL trips.
- Keep Fast Tuner centered
- Control can be slow < 1 sec

Fast Tuner

Piezo-Electric Tuner (PZT):

- Large Industrial Base for Piezo and electronics
- Recover or compensate for Lorentz Detuning (Feed Forward or Feedback)
- Minimizes small changes in resonance do to He pressure.
- Control logic embedded in FPGA or fast DSP

Summary

Where we are

- Field control requirements of 0.05° and .01%, phase and amplitude control can be met with modern electronics.
- Reconfigurable Digital Hardware has made development and operations easier.

Challenges - Thoughts

• Field control requirements beyond 0.05° and .01% control are pushing the limits of the receiver hardware.

Trade offs between process gain (increased latency) and loop gain need to be made to reach beyond these values.

- ERL incomplete energy recovery has not been completely resolved from an RF Control perspective.
- Moving beyond the one amplifier/cavity control for cw proton/ion accelerators.

Acknowledgement - References

The author wishes to thank Tomasz Plawski, John Musson, Trent Allison, Jean Delayen, Tom Powers and Brian Chase for many insightful discussions on the subject of RF control.

[1] L. Merminga, J. Delayen, "On the optimization of Qext under heavy beam loading and in the presence of microphonics", CEBAF-TN-96-022

[2] M. Liepe, et al, Proceedings of the 2005 Particle Accelerator Conference, Knoxville, USA

[3] K. Davis, T. Powers, "Microphonics Evaluation for the CEBAF Energy Upgrade", JLAB-TN-05-040

[4] D. Schulze, "Ponderomotive Stability of RF Resonators and Resonator Control Systems", KFK 1493, Karlsruhe (1971); ANL Translation ANL-TRANS-944 (1972).

[5] J. R. Delayen, "Phase and Amplitude Stabilization of Superconducting Resonators", Ph. D. Thesis, California Institute of Technology, 1978.

[6] T. Plawski, private conversations

[7] A.S. Hofler et al, Proceedings of the 2004 Linear Accelerator Conference, Lubeck, Germany

[8] A. Neumann, et al, Proceedings of the 2004 European Particle Accelerator Conference, Lucerne, Switzerland.

- [9] C. Hovater, et al, Proceedings of the 2007 Particle Accelerator Conference, Albuquerque NM, USA
- [10] L. Doolittle, Proceedings of the 2007 Asian Particle Accelerator Conference , Indore, India
- [11] S. Simrock, et al, Proceedings of the 2006 Linear Accelerator Conference, Knoxville, TN USA
- [12] J. Musson, private conversations
- [13] F. Ludwig et al, Proceedings of the 2006 European Particle Accelerator Conference, Edinburgh Scotland
- [14] U. Mavric and B. Chase, Microwave Journal, Vol. 51, No. 3, March 2008, page 94
- [15] L. Doolittle et al, Proceedings of the 2006 Linear Accelerator Conference, Knoxville, TN, USA
- [16] M. Liepe, et al, Proceedings of the 2001 Particle Accelerator Conference, Chicago, IL, USA

[17] K. Davis, J Delayen, Proceedings of the 2003 Particle Accelerator Conference, Portland USA

[18] T. Powers & C. Tennant, "Implications of Incomplete Energy Recovery in SRF-based Energy Recovery Linacs", JLAB-TN-07-069

