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High QL (> 107) CW Superconducting Accelerating 
cavities supporting ERLs, Light sources or Nuclear 
PhysicsPhysics 



C ll• Cornell
• Argonne
• Wisconsin
• JLAB Upgrade
• Daresbury
• FRIBFRIB
• BESSY
• Peking U.

M• ….More….



R i d Fi ld C t l t t l t f• Required Field Control to meet accelerator performance: 
Proton/ion Accelerators: 0.5o and 0.5%
Nuclear Physics Accelerators: 0.1o and 0.05%
Light Source: 0 05o and 0 01%Light Source: 0.05o and 0.01%

• Loaded Q Optimized for beam loading: 
Nuclear Physics < 1 mA,Nuclear Physics  1 mA, 
Light Sources > 1 mA

• Microphonics & Lorentz Detuning: Determined by p g y
cavity/cryomodule design and background environment.

• Master Oscillator/Timing/Synchronization: Determined by g y y
application (light sources < 100 fs!).

• Accelerator Specific: Operational, Reliability/MaintainabilityAccelerator Specific: Operational, Reliability/Maintainability 
Access etc. 



Depending on the application (injector/LINAC or ERL) the 
cavity QL must be optimized for minimum power. 

/ ( / )Lopt OQ V I R Q≅ / 2Lopt oQ f fδ≅
Beam Loaded Cavity Lightly-non beam loaded Cavity
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• RF power produces radiation 

pressures :  P = (μ0H2 – ε0E2)/4
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• Determines the Feedback Gain needed for control.
• Determines the QL and the klystron power for lightly loaded 

cavitiescavities
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Microphonic Impact on  
cavity power operating at 20 
MV/m (100 mA of beam)

Microphonic
Detuning*

C100 Renascence
stiffened

What
If ??

RMS (Hz) 3.65 1.98 0.83

1.2 Background Microphonics Histogram
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M d li Al ithModeling
• CW accelerators can use simple 

proportional  & integral feedback.

Algorithms
• Generator Driven Resonator 

(GDR)
• Very good models exist of:

Cavity: beam loading, detuning, Lorentz 
effects
Klystron : saturation

• Self Excited Loop (SEL)
Klystron : saturation 

Controller

R(s) K(s)

KlystronController Plant

R(s)
Y(s)

K(s) G(s)

SC Cavity

H(s)
H(s) SC Cavity

Sensor

( )



Courtesy of T. Plawski



GDR SELGDR
• Advantages

- Where fast/deterministic lock up times 

SEL
• Advantages

- High QL Cavities
Systems with large Lorentz detuningare critical

• Disadvantages            
- High Q machines with high 

i h i d l

- Systems with large Lorentz detuning

• Disadvantages
- Slow lock up time

microphonic  content and large 
Lorentz detuning could go unstable
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Amplitude
Controller
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ControllerLimiter

Reference
KlystronControllerController

Phase
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Set Point
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Phase

Set Point Amplitude
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Phase
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• IF direct I&Q sampling• IF direct I&Q sampling

• Digital filtering

• PID controller for I and Q values

N-stage cascaded integrator-comb (CIC) filter (decimator) 

• Rotation matrix

• Single DAC generating IF signal



• IF direct I&Q sampling ⎤⎡ θθ sincos [ ]idyxKx −⋅⋅−= 2• IF direct I&Q sampling

• digital filtering

• I&Q to Phase&Magnitude - COordinate Rotation DIgital Computer  
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• SEL mode

• Microphonics Compensation

• single DAC generating IF signal



0 t 20 MV/ i 6 5 !SEL mode
• Detuned the cavity by +/- 50 kHz  

and  RF system tracked it. RF On

0 to 20 MV/m in 6.5 ms!

• RF turn on of the detuned cavity  
system works perfect, no 
excessive power needed!

Microphonics compensation 

External Diode Detector

• Phase regulation: phase noise 
dropped from 1.2 deg RMS down to 
140 mdeg RMS

• AM noise when compensator is ON 

Internal Signal

p
is around  0.2 % .  (w/o amplitude 
feedback)

2 ms/div
6.5 ms



R i /t itt
Cavity

Receiver/transmitter Control 
System 

Software

Interlocks

LLRFField Control DigitalAlgorithms Digital 
Electronics

Frequency 
Control

Master 
Oscillator



Courtesy of T. Plawski



Parameter Specification Value Imposing Quantities

S/N 72 dB 0.1 degree resolution, 0.01% gradient 
accuracy

Receiver Bandwidth 8 MHz Latency, S/N, temperature stability

Latency 100 ns Control BW

Noise Figure (NF) 52 dB, BW = 100 kHz S/N for phase resolution

Linearity 0.01% F.S. Stability, accuracy

Dynamic Range +54 dBm IIP3 Gradient range

Channel Isolation 67 dB Phase, gradient resolution/accuracy, g y

In-band intermodulation 
distortion (IMD) 67 dBc THD



Receiver S/N determines• Receiver S/N determines 
minimum residual amplitude 
control.

AmplifiersAmplifiers
Mixer
ADC

• Linear components needed 
for stability and accuracy over 
large dynamic range.g y g

It is possible to improve S/N, 
through process gain,  but  at 

Measured amplitude error vs proportional gainthe expense of control 
bandwidth and ultimately 
stability (latency).

Measured amplitude error vs. proportional gain 
for a digital receiver (14 bit). 
Over Sampling improved S/N from 74 dB to 
~ 85 dB. 



O l
• Highly dependent on the 

reference (LO/IF) and 
subsequent board level clock

Open loop
Microphonics

subsequent board level clock
• Linear components needed to 

minimize AM to PM 
contributions

Receiver Floor

contributions
• ADC aperture jitter ~ 100 fs
• Some ADC linearity can be 

improved with near quadratureimproved with near quadrature 
sampling 

Jitter/drift budget from MO toJitter/drift budget from MO to 
the beam needs to be 
completed.

Phase Noise of Open and Closed 
Loop.  Bright Yellow is Closed 
loop.  RMS Phase Noise is 0.049o



• ADC to DAC Delay 
Estimate Amplitude

Phase
• Simulation (both digital 

and model)
• Other Passband modes• Other Passband modes 

need to be filtered
• Klystron Linearization
• Tuner Controls
• Internal Cavity Interlocks 

(Q h)
Cavity Emulator using IIR Filter

(Quench)



Slow Tuner
Stepper Motor: 
– Recover cavity from large excursions 

associated with down time activities T. Kandil LINAC 2004associated with down time activities 
or CHL trips.

– Keep Fast Tuner centered 
– Control can be slow < 1 sec

Fast Tuner
Piezo-Electric Tuner  (PZT):
– Large Industrial Base for Piezo and

10

1)

PZT Amplifier  Transfer Function
Large Industrial Base for Piezo and 
electronics

– Recover or compensate for Lorentz 
Detuning (Feed Forward or Feedback)

– Minimizes small changes in resonance

1
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PZT Drive 36 
VppMinimizes small changes in resonance 

do to He pressure.
– Control logic embedded in FPGA or 

fast DSP
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Wh
• Field control requirements of  0.05o and .01%, phase and 

amplitude control can be met with modern electronics.

Where we are

• Reconfigurable Digital Hardware has made development and 
operations easier.  

Challenges - Thoughts
• Field control requirements beyond 0.05o and .01% control

hi th li it f th i h dare pushing the limits of the receiver hardware. 
Trade offs between process gain (increased latency) and loop gain 
need to be made to reach beyond these values. 
ERL i l t h t b l t l• ERL incomplete energy recovery  has not been completely 
resolved from an RF Control perspective. 

• Moving beyond the one amplifier/cavity control for cw 
t /i l tproton/ion accelerators.
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