

CERN LINAC UPGRADE ACTIVITIES

Alessandra M. Lombardi

In its June 2007 session the CERN Council has approved the White Paper "Scientific Activities and Budget Estimates for 2007 and Provisional Projections for the Years 2008-2010 and Perspectives for Long-Term", which includes construction of a 160 MeV H- linear accelerator called LINAC4, and the study of a 5GeV, high beam power, superconducting proton Linac (SPL).

- 1. Present CERN proton LINAC
- 2. <u>Staged upgrade : LINAC4 and SPL</u>
- 3. <u>CARE/HIPPI</u>

Linac2 (1978, upgraded 1993)

A Duoplasmaton ion source giving up to 300 mA of beam current.

Until 1993 the pre-injector was a 750 kV Cockcroft-Walton replaced by a 4-vane RFQ (<u>RFQ2</u>) with an injection energy of 90 kV and an output energy of 750 keV.

• A three tank , 202.56 MHz drift tube linac with quadrupole focusing brings the beam energy to 50 MeV.

0

An 80 meter beam transport carries the linac beam to the 1.4 GeV PSB .

Linac2 Beam Current Delivered to PSB (Operational SFT & ISO) (LTB-TRA60)

LINAC is working well above the design current.

Why upgrade the present linac

LINAC2	
protons	H- Charge exchange injection can increase brilliance in a ring.
50 MeV	Reach the limit of the space charge tune shift in the CERN PS booster.
200 MHz	RF frequency that is not widespread anymore. No components "off the shelf".
Since 1978	Tanks, vacuum, mechanics are aging.

Upgrade with a look to the future

Layout of the new injectors

Expectations

LINAC4 construction is approved

o LINAC4

- Rejuvenation of the LINAC (Linac2 dates from 1978)
- Higher performance from the PS Booster (2 X brightness)
 - space charge tune shift decreased by 2;
 - \circ ~ low loss injection process ,
 - Better longitudinal injection (chopping and "energy painting")

o LP-SPL (+PS2)

- Rejuvenation of injectors (PBS,PS date from 1972 and 1559)
- Higher performance from SPS and more...
 - SPS could deliver 2.2X the ultimate LHC beam;
 - Potential to increase the intensity per pulse ,
 - $_{\odot}$ 50% of the LP-SPL pulses are available for other physics (ISOLDE/EURISOL, LHeC...)

Work towards a Technical Design report for SPL and PS2

- o SPL
 - High power (4MW) beam available for neutrino factory,...

<u>Activities Linac4 (2008-2013)</u> Goal : operational in 2013

LINAC4 parameters			
lon species	H	Charge exchange injection	
Output kinetic energy	160 MeV	Halves the space charge detuning at PSB injection	
Bunch frequency	352.2 MHz	LEP klystrons	
Max. repetition rate	1.1 (2) Hz	Ready for LP-SPL operation	
Beam pulse duration	0.4 (1.2) ms	Ready for LP-SPL operation	
Chopping factor (beam on)	65%	Limit the long. Losses at PBS injection	
Source current	80 mA		
Linac current	64 mA	Losses at low energy	
Average current during beam pulse	40 mA	After chopping	
Beam power	2.8 kW		
Particles / pulse	1.0 10 ¹⁴		
Transverse emittance (source)	0.25 mm mrad		
Transverse emittance (linac)	0.4 mm mrad	Half the emittance of Linac2	

Linac4 Building

Linac4 Layout

	45k	ke <mark>V 3MeV</mark>		3MeV	50MeV	102MeV 160M
H-		RFQ CH	IOPPER			
RF volu	me	Radio Frequency	Chopper	Drift Tube Linac	Cell-Coupled Drift Tube	Pi-Mode Structure
(DE) 45 k	SY) (V	352 MHz 3 m	3.6 m 11 EMquad	352 MHz 18.7 m	352 MHz 25 m	352 MHz 22 m
1.9n LEB	η Τ	1 Klystron 0.6 MW	3 cavities	3 tanks 3 klystrons 4 MW	21 tanks 7 klystrons 6.5 MW	12 tanks 8 klystrons ~12 MW
				111 PMQuad	21 EMQuads	12 EMQuads

Total Linac4: 80 m, 19 klystrons Beam Duty cycle: 0.1% phase 1 (Linac4) 3-4% phase 2 (SPL) (design for losses : 6%)

4 different structures, (RFQ, DTL, CCDTL, PIMS)

Ion current: 40 mA (avg. in pulse), 65 mA (bunch)

"Prototyping" activities 1/2

"Prototyping" activities 2/2

refer to papers in this conference

Testing the low energy part (0-3 MeV)

Linac4 as front end to SPL

- Linac4 will be able to operate without modifications for the lowpower SPL (LP-SPL), at 0.24% duty cycle.
- For SPL (2-3% beam duty cycle)
 - A new source is needed
 - Electronics (power supplies, etc.) and infrastructure (cooling, electricity) are dimensioned for the low duty cycle and need to be changed.
 - All the accelerating structures and other hardware in the beam line are designed for a maximum duty cycle of 10% and can be reused.
 - The control of the losses (alignment budget and correction system) and the shielding is already implemented for HP-SPL

<u>Activities SPL</u> Goal : design study in 2011

	LP-SPL	SPL
Energy [GeV]	4	5
Beam power [MW]	0.192	>4.0
Repetition rate [Hz]	2	50
Average pulse current [mA]	20	40
Source current [mA]	40	80
Chopping ratio [%]	62	62
Beam pulse length [ms]	1.2	0.4-1.2
Beam duty cycle [%]	0.24	2.0- 6.0
Number of klystrons (704 MHz, 5 MW)	24	53
Geometric cavity beta	0.65/1.0	0.65/1.0
Number of cavities	42/160	42/200
Cavities/klystron	8 - 16	4-8
Cavities/cryostat	6/8	6/8
Length including Linac4 [m]	459	534

Definition of the layout on the CERN site

 Workshop , april 2008 "Status of analysis of SPL RF frequencies and cooling temperature"

Choice of 700 MHz and 2 K

<u>Building blocks of SPL</u> :

5cells/cavity; 6 cavities/cryostat; 704 MHz; 19 MV/m

5cells/cavity; 8 cavities/cryostat; 704 MHz; 25 MV/m

SPL nominal layout and beam dynamics activities

160-589 MeV 87 m 589-5137MeV 361 m beam axis

- •Nominal layout defined
- •Beam dynamics with beam from Linac4 is verified
- •RF error studies done

Prototyping SC cavities

- Surface treatment techniques tests on a 700 MHz, low beta single cell from CEA, expected for 2009 (issue e-polishing at low beta).
- Prototypes β =0.65 and β =0.92 5-cell cavities, to demonstrate 19 MV/m and 25 MV/m, expected in the next years.
- Ideally a fully equipped cryostats to be tested
 - 8 cavities 5-cell Beta=0.92 for high power RF tests

HIPPI and after

Hippi (High Intensity Pulsed Proton Injector) is a Joint Research
Activity in the framework of CARE, within the European FP6 (2004-2008). The activity received 3.6 M€ from the EU.

10 European laboratories participate in HIPPI and the projects supported within HIPPI are Linac4, FAIR and the ISIS upgrade.

HIPPI is organized in 4 work packages: normal conducting structure superconducting structures chopping beam dynamics

Lots of the prototyping work for Linac4 was covered by HIPPI

CARE , HIPPI will terminate at the end of the year. Accelerators actives will continue in FP7with EuCARD.

Ongoing CERN Linac activities aim at Linac4 (160 MeV, H-) in operation in 2013 Design study for SPL in 2011 Future plans, assuming a positive decision in 2011, include 4-5 GeV SC Linac injecting in a new synchrotron (PS2) in 2017 lones d'inplantation des batiments SPL Zone d'extension JE EN PLAN - 1/2500 Acces materiel Acces personnel Linac 4 late-Retouvez les references des batiments SPL plan intitule "SPL PROJECT

RESERVE

SPL parameter list