

CANADA'S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

Charge State Boosters for Radioactive Ion Acceleration

F. Ames

- 1. Introduction
- 2. State of the art charge breeding with EBIS and ECRIS
- 3. Future developments
- 4. Conclusion and Summary

LINAC08, Victoria, October 2, 2008

LABORATOIRE NATIONAL CANADIEN POUR LA RECHERCHE EN PHYSIQUE NUCLÉAIRE ET EN PHYSIQUE DES PARTICULES

Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

methods for charge state increase:

passive

stripping after first acceleration

(ISAC I)
simple, fast, high efficiency for light ions,
pure beams
low efficiency for heavy ions

fast 1+ ions slow electrons

active

charge state breeding with an EBIS (REX-ISOLDE, MSU, GSI,...)
charge state breeding with an ECRIS (ISAC II, GANIL, KEK-JAERI, ANL,...)

high charge states, works for all masses complicated, slow,

background from residual gases

fast electrons slow 1+ ions

charge state evolution in EBIS or ECRIS

system of rate equations only changes by one charge are considered

$$\frac{dn_i}{dt} = n_e v_e \Big[\sigma_{i-1 \to i}^{ion} n_{i-1} - \Big(\sigma_{i \to i+1}^{ion} + \sigma_{i \to i-1}^{RR} \Big) n_i + \sigma_{i+1 \to i}^{RR} \Big] - n_0 v_{ion} \Big[\sigma_{i \to i-1}^{chex} n_i - \sigma_{i+1 \to i}^{chex} n_{i+1} \Big] - v_i^{coll} \frac{exp \left\{ -\frac{ieU_w}{kT_{ion}} \right\}}{-\frac{ieU_w}{kT_{ion}}} n_i$$

n_e, n_i, n_0	density of electrons, ions with charge i and neutrals
v _e , v _i	velocity of electrons and ions
$\sigma^{ion}, \sigma^{RR}, \sigma^{chex}$	cross section for ionization, radiative recombination and charge exchange
v ^{coll}	coulomb collision frequency
T ^{ion}	ion temperature
U _w	electrostatic trapping potential

in an ECRIS electron energy distribution function has to be known

charge state breeding of Krypton in an EBIS

Electron Beam ion source (EBIS)

REXEBIS (ISOLDE - CERN)

requires cooling and bunching of incoming beam (REXTRAP)

REXTRAP/REXEBIS charge breeding system

Charge breeding of ¹³³Cs

23.05.02 80 -Cesium breeding time 78 ms 60 lon current pA 40 29+ 28+ C³⁺ Ne⁴⁺ 0⁴⁺ 30+ 31+ Ne⁵⁺ 20 27+ 0 75 80 85 90 95 100 Magnetic field mT

Element	A/q	Total eff. ((%) $T_{cool} + T_{breed}$ (ms)		Comments
⁷ Li ³⁺	2.333	6.0	20 + 18	Stable	
⁹ Li ³⁺	3.000	5.0	50 + 15	Radio	Low rep rate due to linac
$^{10}{ m Be^{3+}}$	3.333	5.0	50 + 15	Radio	Low rep rate due to linac
¹⁹ F ⁵⁺	3.800	7.8	20 + 7	Stable	
$^{23}Na^{9+}$	2.555	10.0	30 + 28	Stable	
²⁷ Al ⁷⁺	3.857	>15	20 + 10	Stable	Injected to EBIS as AIF+ molecule
$^{29}Mg^{9+}$	3.222	6.0	30 + 28	Radio	Very large error bars
$^{39}K^{10+}$	3.900	15.0	20 + 12	Stable	
⁶⁵ Cu ¹⁹⁺	3.421	11.1	100 + 68	Stable	
$^{65}Cu^{20+}$	3.250	7.8	100 + 68	Stable	Too short breeding time
⁶⁷ Cu ¹⁹⁺	3.526	12.6	100 + 68	Radio	
$^{68}Zn^{21+}$	3.238	12.4	80 + 78	Stable	For 80Zn21+
$^{71}Cu^{20+}$	3.550	11.0	100 + 98	Stable	Large error \rightarrow overestimated?
$^{116}Cd^{31+}$	3.742	9.6	250 + 248	Stable	For 124Cd30+ and 126Cd31+ run
¹³³ Cs ³³⁺	4.030	10.8	200 + 198	Stable	For 124Cd30+ and 126Cd31+ run
¹³⁶ Xe ³⁴⁺	4.000	8.7	200 + 198	Stable	For 144Xe34+ run
$^{181}\text{Ta}^{40+}$	4.525	2.9	200 + 198	Stable	Not optimum tuning
²³⁸ U ⁵²⁺	4.577	4.3	500 + 498	Stable	

A selection of elements charge bred during the 2006 measurement campaign

The total efficiency is the combined REXTRAP + REXEBIS + mass separator efficiency.

bunching and cooling efficiency $\approx 50\%$

F. Wenander, NIM B (2008) in press

Electron Cyclotron Resonance Ion Source (ECRIS)

modified PHOENIX source for ISAC

2 step deceleration for the injection of singly charged ions

2 step acceleration scheme + Einzel lens focusing

for the extraction of the highly charged ions

CSB test stand at TRIUMF

ION SOURCE TEST STAND

14.5 GHz ECR source PHOENIX from Pantechnikelements measured :Ar, Kr, Xe from ECR ion sourceK, Rb, Cs from surface ion source

installation of the charge state breeder at ISAC

mass spectrum with and without Cs⁺ injection (500 W rf power)

charge state distribution of Cs 15 nA Cs¹⁺ injected total efficiency >20%

charge breeder results from ISAC test stand

Measurements with ions from standard ISAC ion sources

Element	Mass	Charge state with maximum efficiency (A/Q)	Efficiency (%)	rise time (90%) for charge state with maximum efficiency (ms)	1+ ion source
Ar	40	8+(5)	5.5	102	ECR
Kr	84	12+(7)	6.3	401	ECR
Xe	129	17+(7.6)	4.8	432	ECR
K	39	9+(4.3)	2.1		surface
Rb	85/87	13+(6.5)	3	230	surface
Cs	133	20+(6.7)	3.5	300	surface + testsource

•emittance of Csⁿ⁺ measured < 20 π mm mrad @ 15q keV

ongoing developments

•EBIS/T

increase of electron beam current density

⇒higher capture efficiency higher capacity faster ionization

continuous mode operation

continuous injection, pulsed extraction at REXEBIS 2% for K¹⁰⁺

selective ionization by adaptation of electron energy

dielectronic recombination

J.R. Crespo Lopez-Urrutia et al. Rev Sci. Instr. 75 (2004) 1560

TESIS (tubular electron string ion source)

⇒high efficiency
 pulsed and continuous mode operation possible
 E.D. Donets et al. Rev Sci. Instr. 75 (2004) 1566

ongoing developments (cont.)

•ECRIS

optimization of injection optics ⇒higher capture efficiency

increase of rf frequency and / or 2 frequency heating

⇒higher plasma density capture efficiency higher charge states faster ionization

ultra high vacuum

⇒smaller background from residual gas higher charge states

summary

	EBIS	ECRIS	
state of the art	high charge states	medium charge states	
	A/q ≈ 4	A/q < 9	
	fast x 10 ms	medium fast x 100 ms	
	efficient	efficient	
	EBIS alone ≈ 20%	≈ 3-10%	
	pulsed	continuous beams	
	semi continuous mode	only long pulses (ms @ 1 Hz)	
	pure beams	high beam contamination	
	intensity limitation 10 ⁹ /s	high intensity 10 ¹² /s	
	pre bunching and cooling necessary		
goals for developments	higher capacity	higher efficiency	
	higher efficiency	faster breeding	
	selective ionization	lower beam contamination	
		higher charge states	

thank you TRIUMF 4004 Wesbrook Mall Vancouver, B.C. Canada V6T 2A3 Tel: 604 222-1047 Fax: 604 222-1074 www.triumf.ca