STATUS OF A HIGH CURRENT LINEAR ACCELERATOR AT CSNS

Shinian Fu

Institute of High Energy Physics, Beijing

MO202, LINAC08, Victoria, CANADA, Sept.29, 2008

Outline

- 1, Brief introduction to CSNS
- 2, Design of CSNS Linac
- 3, R&D for key technology
- 4, Conclusions

1, Brief introduction to CSNS

Schematic view of CSNS

• 100kW fits in China's present economical situation, but upgradable to world class (200-500kW).

Primary design parameters

Phase	I II		ul	ultimate	
Beam power on target [kW]	120	240	500		
Beam energy on target [GeV]	1.6	1.6	1.6		
Ave. beam current [μA]	76	151		15	
Pulse repetition rate [Hz]	25	25		25	
Protons per pulse [10 ¹³]	1.9	3.8		8	
Linac energy [MeV]	81	132		30	
Linac type	DTL	DTL		TL+SCL	
Target number	1	1			
Target material	Tungsten				
Moderators	H ₂ O (300K), CH ₄ (100K), H ₂ (20K)				
Number of spectrometers	3 18			>18	
System name October 9, 2008					Page

Milestones

- 2005. 6: "Political approval" (CD0)
 - central government approval & fund allocation
- 2006.1 -: CAS funded R&D 1 (35 M CNY)
- 2007.7 -: Guangdong funded R&D 2 (40 M CNY)
- 2007.12 -: "Project establishment review"
 - Budget baseline: 1.4 B CNY + 0.5 B CNY (Guangdong) + land
- 2008.6: Environmental impact assessment completed
- 2008.9. Establishment approval(financial approval). (CD1)
- 2009: ground breaking expected
 - Need to pass feasibility review and preliminary design reviews

2, Design of CSNS Linac

CONS CHINESE ACADEMY OF SCIENCES

CHINA SPALLATION NEUTRON SOURCE

lon source

Main parameters of CSNS ion source (phase I)

- > Ion
- Energy (keV)
- Current (mA)
- **Emittance** (π mm-mrad, norm, rms)
- Repetition Rate (Hz)
- Beam Width (us)
- Lifetime (month)

H-

45-50 (40-50) (the input energy of RFQ is 50keV)

20 (75% transmission required for Linac)

<0.20 (decided by input emittance of RFQ)

25

443.475 + 100 (space charge neutralization time)

>1

lon source

Type of the chosen H- ion source

> ISIS ion source (Penning Surface Plasma H⁻ Source)

Reasons of the choice

- Completely satisfy CSNS (phase I) requirements
- Comparatively cheaper (comparing to RF cusped volume H⁻ ion source(SNS); hot cathode cusped volume H⁻ ion source (JPARC) etc.)
- Good collaboration with and kind helps from RAL
- ✓ provided us with the ion source mechanical drawings
- helped us on the experiments of several sets of discharge chambers
- ✓ Gave us many technical instructions on H- ion source

.

LEBT

• Pulse structure for low beam loss in the ring.

• Induction cavity replaced with electrostatic deflector

LEBT

Injection condition: x_c=2.65mm x_c'=50mrad

324.000MHz,q= 1.0,Ws=0.080,Wg=0.550,A=0.588,amu=1.00837,i= 40.0mA

systeThe initialeand final particle distributions in phase space Page

LEBT

➢ The needed deflecting voltage 2V: 3.75kV

The beam transmission versus the deflecting voltage

The beam transmission is 0 at 2*V is 3.75kV

> The peak beam power deposited in RFQ cavity: 2.495kW

> The average beam power deposited in RFQ cavity is about 25W

LEBT

The initial beam Twiss parameters from ISIS ion source
90% space charge neutralization, emittance: 0.4 π mm.mrad (40mA)
0.2 π mm.mrad (20mA)

RFQ

- Four vane type with two resonantly coupled cavities, following the experience gained in ADS RFQ.
- **Frequency(MHz)** 324 9 a(mm), m, B, Ws(MeV) φs 8 7 **Injection Energy (keV)** 50 6 5 **Output Energy (MeV)** 3.0 4 We 3 **Pulsed beam current (mA)** 40 2 m 1 **Beam duty factor** 1.05% а 0 40 90 290 -10240 1401903.603 Vane length (m) cell number Norm. rms emittance (π mm.mrad) 0.2 Maximum surface field (MV/m) 31.68(1.78Kilp) Power dissipation (kW) 410

-30

-40

-50

-60

-70

-80

-90

-100

340

(deg)

9

RFQ

• Beam dynamics and structure design without dipole stabilized rod

MEBT

Total length =3030 mm
8 Q magnets combined with ST magnets
2 bunchers for longitudinal beam match
2 RF deflectors as a chopper will be added in phase-II
Two tasks of matching and chopping lead to emittance growth and halo formation.

MEBT

• A large Emittance growth in simulations

I=40mA 16 RMS Emittance Growth Rate (%) - y 14 **_**Z 12 10 8 6 4 2 30 0 5 10 15 20 25 Element Number

The RMS emittance growths in the x, y, z directions are respectively about 7.1%, 4.25% and 0.3%

The RMS emittance growths in the x, y, z directions are respectively about 14%, 4. 5% and 1.1%

DTL

• DTL design

Tank number	1	2	3	4	5	6	7	total
Output energy (MeV)	21.76	41.65	61.28	80.77	98.86	115.8	132.2	132.2
Tank length (m)	7.99	8.34	8.5	8.85	8.69	8.57	8.67	59.6
Space between tanks (m)	0.2	0.27	0.32	0.36	0.39	0.42		
Number of cell	61	36	29	26	23	21	20	216
RF driving power (MW)	1.41	1.41	1.39	1.45	1.45	1.45	1.49	10.05
Total RF power (MW)	1.97	2.01	1.98	2.03	1.99	1.96	1.98	13.92
Accelerating field (MV/m)	2.06 to 3.1	3.1	3.1	3.1	3.1	3.1	3.1	
Synchronous phase	-30 to -25	-25	-25	-25	-25	-25	-25	
FD lattice with EMQ chosen for strong focusing with small emitt. growth			FF(with	DDDO PMQ :	**** CORE **** 11+7 Leak #7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0000 DTL 354. *** 144444 14444 14444 1444 14444 14444 14444 1444 14444 1444 1		
Suctom name, Ootobo	* 0. 2000							Dogo

3, R&D for key technology

Ion Source

• Collaboration with ISIS

Crouching tiger, great ideas

China is on track to become a major player in global science. Rather than designing and building their facilities from scratch, the Chinese Academy of Sciences (CAS) has been collaborating with some of the world's leading science abs to develop new ideas, and building partnerships which will enable Chinese facilities to benefit from tried and tested technology.

The Institute of High Energy Physics (IHEP), which is part of

ml	A MARCE NAME	21-3 	Water
	A COLORADOR		E
			To fails
A HURDE STATUT	A CONTRACTOR OF CONTRACTOR		To Arts
	1		To Ball
21 1513 <u>21</u> 1.0	N 2004 CH1 2		for Aufe
THE REAL PROPERTY AND INCOME.		-	The

CSNS ion source body tested at ISIS with a beam current of 55mA 50Hz, 500us. The emittance measurement gave almost the same value as that of ISIS operating ion source.

Dan Faircloth with Dr He Wei of IHEF

Ion Source

• A test stand is building up at IHEP

Schematic of ion source layout.

LEBT

• Electrostatic chopper is gong to test on ADS RFQ

replace beam collimator with deflecting plates

Q1: the RFQ vane damaged by the dumped beam? Q2: spark occurs in the electrostatic chopper?

CSNS CHINESE ACADEMY OF SCIENCES

CHINA SPALLATION NEUTRON SOURCE

RFQ

• RFQ technology has been developed in an ADS program

Four vane structure RFQ

Four RF feeders

Frequency(MHz)	352.2
Injection Energy (keV)	75
Output Energy (MeV)	3.5
Pulsed beam current (mA)	50
Beam duty factor	6-100%
Vane length (m)	4.731
Norm. rms emittance (πmm.mrad)	0.2
Maximum surface field (MV/m)	33(1.8Kilp)
Power dissipation (kW)	630

LEP-II RF power source

RFQ

• 93% transmission rate of 46mA output beam at 7% duty

46mA output beam at duty 7% with 1.43ms pulse length at 50Hz was obtained with a beam transmission rate

asurem

Simulat

idn

0 0.02

Energy Spectru

-0.08 -0.06 -0.04 -0.02

0.04 0.06

DTL

• A prototype DTL tank of 2.9m in length. It is the first section of the first tank. It is the most difficult section.

Short tank for explosive bonding test. It is successful, but the port was found to be uneasy for welding.

Electroforming method was successfully adopted by the domestic vendor in the tank fabrication.

DTL

DTL tank under final machining of the drift tube holes

J-PARC type electromagnetic quadrupoles

Bulk copper for drift tube by EBW

CONS CHINESE ACADEMY OF SCIENCES

CHINA SPALLATION NEUTRON SOURCE

185566

00 400 5 Applied current, I [A]

500

600

700

800

300

200

DTL

• Hall plate, single stretched wire and rotating coil

RF Power Source

• A novel HV pulse power supply has been demonstrated

RF Power Source

Basic parameters of prototype

•	AC resonance charging voltage	120 kV (peak)
•	AC resonance charging current	120 A (peak)
•	Resonance frequency	100 Hz
•	High voltage discharging pulse	0 ~ 1ms
•	Rep. rate of High voltage discharging pulse	25 Hz or 50 Hz
•	Resonance inductor	1.6 H, Q0≥ 350
•	Resonance capacitor bank	1.585 uF \pm 1%
•	Energy storage capacitor bank	6.34 uF
•	Maximum temperature rise	65 K

Klystron output pulse (1ms, 420kW) driven by the prototype pulse power supply

THANKS!

福枝 Fuuva

