

Linacs for Future Muon Facilities*

Alex Bogacz, Jefferson Lab and Rolland Johnson, Muons, Inc.

* Supported in part by DOE STTR grant DE-FG02-05ER86253

Thomas Jefferson National Accelerator Facility

- Muon Colliders and Neutrino Factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies (e.g. to mass-produce Higgs bosons in s-channel) and precision measurements of parameters of the neutrino mixing matrix with intense (10¹⁴ µ/sec), small divergence neutrino beams with well-understood systematics.
- Their performance and feasibility depend strongly on how well a muon beam can be produced, cooled and accelerated to multi-GeV and TeV energies.
- Recent progress in muon cooling and accelaration (International Design Study and prototype tests) encourages the hope that such facilities can be built during the next decade...

Alex Bogacz

- Future Muon Colliders and Neutrino Factories based on muon storage rings will require innovative linacs to:
 - produce the muons
 - cool them
 - Iongitudinally compress and 'shape' them into a beam
 - rapidly accelerate them to multi-GeV (NF) and TeV (MC) energies
- Each of these four linac applications has new requirements and opportunities that follow from the nature of the muon in that:
 - it has a short lifetime (2.2 μsec) in its own rest frame
 - it is produced in a tertiary process into a large emittance (p + A $\rightarrow \pi \rightarrow \mu$)
 - it does not undergo nuclear interaction with matter; it only 'sees' Coulomb forces
 - its electron, photon, and neutrino decay products can be more than an annoyance... high backgrounds

Operated by JSA for the U.S. Department of Energy

- Production A superconducting 8 GeV proton linac capable of CW operation is being studied as a versatile option for muon production for diverse purposes [M. Popovic et al., MOP011, LINAC 2008]
- Cooling A linac filled with high pressure hydrogen gas and imbedded in strong magnetic fields has been proposed to rapidly cool muon beams [R.P. Johnson, LINAC 2004]

Longitudinal Compression/Emittance Exchange

- NF: A GeV scale superconducting linac with individually phased RF cavities; far off-crest at the beginning of the linac and gradually brought on-crest by the linac end. Induced synchrotron motion is allowing for longitudinal bunch compression in both length and momentum spread.
- MC: combined with cooling and acceleration emittance exchange via 'wedge' absorbers
- Acceleration Recirculating Linear Accelerators (RLA) are possible because muons do not generate significant synchrotron radiation even at extremely high energy and in strong magnetic fields (m_µ = 105 MeV/c²)
 - single linac 'Dogbone' RLA capable of simultaneous acceleration of both μ^+ and μ^- species
 - pulsed Linac quadrupoles to allow the maximum number of passes [Bogacz and Johnson, EPAC08]

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Muons, Neutrino Factory – International Design Study hosted by RAL

Muon Ionization Cooling

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

- Helical Cooling Channel (HCC)
 - Continuous absorber for emittance exchange
 - Solenoidal, transverse helical dipole and quadrupole fields
 - Helical dipoles known from Siberian Snakes
 - Incorporate RF cavity in helical solenoid coil

Derbenev, Yonehara

Operated by JSA for the U.S. Department of Energy

Jefferson Lab

Alex Bogacz

Thomas Jefferson National Accelerator Facility

- To ensure adequate survival rates of short-lived muons the accelerator must provide high average gradient, while maintaining very large transverse and longitudinal accelerator acceptances.
 - The above requirement drives the design to low RF frequency, e.g. 200 MHz.
 - If normal-conducting cavities at that frequency were used, the required high gradi-ents would demand uneconomically high peak RF sources.
 - Superconducting RF is a much more attractive solution the RF power can then be delivered to the cavities over an extended time, and thus RF source peak power can be reduced.
- While recirculation (RLA) provides significant cost savings over a single linac, it cannot be used at low energy since the beam is not sufficiently relativistic and will therefore cause a phase slip for beams in higher passes

Operated by JSA for the U.S. Department of Energy

- For optimum performance to maximize number of events (µ → v decays NF, µ[±] collisions MC) – the Linac repetition rates should scale inversely with the laboratory lifetime of the muon in its storage ring,
 - something as high as 1 kHz for a 40 GeV Neutrino Factory
 - or as low as 20 Hz for a 5 TeV Muon Collider.

Operated by JSA for the U.S. Department of Energy

N

Initial beam emittance after cooling at 220 MeV/c

International Design Study		٤ _{rms}	Α = (2.5) ² ε
normalized emittance: ϵ_x/ϵ_y	mm⋅rad	4.8	30
longitudinal emittance: ε_1 ($\varepsilon_1 = \sigma_{AD} \sigma_z / m_{\mu} c$)	mm	27	150
momentum spread: $\sigma_{\Delta p/p}$ bunch length: σ_z	mm	0.07 176	± 0.17 ±442

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

NF Linear Pre-accelerator – 3 GeV

To achieve fast field drop from solenoid to cavity the solenoid has an **outer counter-coil**, which intercepts its magnetic flux, and the cavity has a **SC shielding** at its outer surface. That allows one to achieve magnetic field less than **0.1 G** inside the cavity

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Jefferson Lab

uons,

Alex Bogacz

Fri Dec 03 11:22:15 2004 OptiM - MAIN: - D:\Study 2A\PreLinac\Linac_sol.opt

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

The 201 MHz Cavity was tested to the design gradient of 16MV/m at B=0 and at B ~ a few hundred Gauss

Muons,

inc.

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

- better orbit separation at linac's end ~ energy difference between consecutive passes $(2\Delta E)$
- allows both charges to traverse the Linac in the same direction (more uniform focusing profile
- the droplets can be reduced in size according to the required energy
- both charge signs can be made to follow a Figure-8 path (suppression of depolarization effects)

Alex Bogacz

- Quad pulse would assume 500 Hz cycle ramp with the top pole field of 1 Tesla.
- Equivalent to: maximum quad gradient of $G_{max} = 2 \text{ kGauss/cm} (5 \text{ cm bore radius})$ ramped over $\tau = 10^{-3}$ sec from the initial gradient of $G_0 = 0.1 \text{ kGauss/cm}$ (required by 90⁰ phase advance/cell FODO structure at 3 GeV) $G_8 = 13 G_0 = 1.3 \text{ kGauss/cm}$
- These parameters are based on similar applications for ramping corrector magnets such as the new ones for the Fermilab Booster Synchrotron that have 1 kHz capability

$$T \approx 8 \times \frac{500 + 250}{3 \times 10^{-8}} \sec = 2 \times 10^{-5} \sec \frac{1}{\tau} \approx 2 \times 10^{-2}$$

Jefferson Lab

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Alex Bogacz

Fixed

no phase adv. across the linacbeam envelopes not confined

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

- Muon Colliders & Neutrino Factories will require innovative linacs to: produce the muons, cool/compress and 'shape' them into a beam and finally to rapidly accelerate them to multi GeV (NF) & TeV (MC) energies
- Large acceptance Muon Linac provides rapid acceleration and effective longitudinal bunch compression via induced synchrotron motion
- Dogbone' (Single Linac) RLA has advantages over the 'Racetrack'
 - better orbit separation for higher passes
 - offers symmetric solution for simultaneous acceleration of μ^+ and μ^-
- FODO Optics is superior to Triplet focusing more passes can be supported
 - uniform phase advance decrease in both planes
- Pulsed linac Optics....even larger number of passes is possible if the quadrupole focusing can be increased as the beam energy increases
 - Increase from 8-pass (Fixed Optics) to 12-pass (Pulsed Optics) for 500 m long 4 GeV pass RLA
 - Iooks very encouraging and opens possibility for a TeV scale RLA ...vigorous R&D efforts...

Operated by JSA for the U.S. Department of Energy