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Abstract 
Tuning particle accelerators is time consuming and 

expensive, with a number of inherently non-linear 
interactions between system components. Conventional 
control methods have not been successful in this domain, 
and the result is constant and expensive monitoring of the 
systems by human operators. This is particularly true for 
the start-up and conditioning phase after a maintenance 
period or an unexpected fault. In turn, this often requires a 
step by step restart of the accelerator. Surprisingly few 
attempts have been made to apply intelligent accelerator 
control techniques to help with beam tuning, fault 
detection, and fault recovery problems. The reason for 
that might be that accelerator facilities are rare and 
difficult to understand systems that require detailed expert 
knowledge about the underlying physics as well as 
months if not years of experience to understand the 
relationship between individual components, particularly 
if they are geographically disjoint. This paper will give an 
overview about the research effort in the accelerator 
community that has been dedicated to the use of artificial 
intelligence methods for accelerator beam line tuning. 

BEAM LINE TUNING 
A typical accelerator beam line includes trim magnets 

for steering, quadrupole magnets for focusing, Faraday 
cups and stripline detectors for measuring current, and 
profile monitors for measuring beam size and position. 
Beam loss monitors give information about loss of beam 
through miss-steering. Unfortunately, real systems rarely 
work as they are designed. Problems arise from imperfect 
beam production, residual magnetic fields, poorly 
modeled beam behavior, misplaced or flawed control 
elements, and changes to the design or use of the facility 
after it has been built. Beam line designers consider these 
problems and build diagnostic components into the beam 
lines. Profile monitors and current detectors are used to 
measure beam parameters throughout the line to provide 
information for verifying or correcting beam 
characteristics. Even so, imperfect detectors, system 
errors, and noise due to various effect cause beam line 
control to be difficult at best. Surprisingly, few attempts 
have been made to apply intelligent accelerator control 
techniques to help with beam tuning, fault detection, and 
fault recovery problems.  

PREVIOUS AI ATTEPMPTS TO 
ACCELERATOR CONTROL 

An early example of AI technology applied to 
accelerator control can be found in Higo et al. [1]. In this 
work a rather simple objective of maintaining a given 
system or operation condition has been discussed. AI is 
relevant here for dealing with the complex problems of 
generalized hysteretic and stochastic effects.  
 

Weygand [2] reports on a development for a 
knowledge-based, domain specific expert system at 
Brookhaven National Laboratory. The purpose of the 
expert system is to aid in the control of the Heavy Ion 
Transfer line (HITL) and in turn to minimize down time 
after a change in running conditions or the start of a new 
run. Due to the complexity of the expert system it was 
divided up into three domains (control, device beam 
influence, and device cause and effect segment). Separate 
from that is the goal-solving mechanism of the program. 
This goal-solving function takes a specified high level 
goal, and then, by developing a tree of sub-goals, attempts 
to solve the given goal via a hill-climbing technique. 
However, the system doesn’t take into account that 
conditions may change during the execution of the 
solution.   

Other  attempts  at  intelligent  control  for accelerators 
include the ISIS tune advisor (Schultz et al. 1990), the 
LAMPF Beam Loss Expert (Clearwater et al. 1986), and a 
learning system based on RL4 (Clearwater et al. 1990). 
The ISIS tune advisor and LAMPF Beam Loss Expert 
were both expert systems for indirect control which were 
never implemented as general or real-time control 
solutions. The learning system used knowledge-based 
induction for off-line learning of beam position monitor 
placement, but was not implemented as a general learning 
algorithm.  

Neural networks have been applied to accelerator 
control for actual manipulation of control parameters as 
well as for simulation. Howell et al. [3] used neural 
networks for modeling and control of a negative-ion 
accelerator source at Los Alamos National Laboratory to 
predict the beam characteristics of the source for given 
changes in control settings. However, the success was 
rather limited.   

Brown [4] developed an automated controller based on 
an artificial neural network and evaluated its applicability 
in a real-time environment. This capability was developed 
within the context of a small angle negative ion source on 
the Discharge Test Stand at Los Alamos National 
Laboratory. Using no knowledge of operating conditions, 
the controller begins acquiring rough snapshot of the 
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operational condition. Once the rough approximation of 
the condition has been determined, the network formulates 
a model from which it determines the best operating point. 
The controller takes the ion source to that operating point 
for a reality check. As real data is fed in, the model of the 
operating surface is updated until the neural network's 
model agrees with reality. The controller then uses a 
gradient ascent method to optimize the operation of the 
ion source. Mead (1994) presents some successful control 
examples of the above application. 
 

The SETUP program developed at CERN (Bouche 
1995) is representative of efforts to apply AI techniques to 
small subsystems. SETUP is only used for pre-control 
equipment setup. The program uses an object-oriented 
description language for representing control actions. The 
reasoning system searches the oriented graph defined by 
an object description to make decisions about equipment 
setup without human assistance. The program provides a 
good example of using object models for control decision 
making. It does not attempt to perform real-time control 
or use on-line feedback from the system. 
 

Arruat [5] reports on symbolic computing programs 
that address not only the manipulation of mathematical 
functions, but also process control. He uses symbolic 
computing as a tool for developing algorithmic engines 
that can be fully integrated in the controls environment 
and facilitates modular design of control systems. He 
reports that this technique has been applied to a special 
class of accelerator problems, namely the beam steering in 
transfer lines and accelerator rings in the CERN PS 
Complex.  
 

In his Ph.D. dissertation Jennings [6] developed and 
implemented a new model of multi-agent coordination, 
called Joint Responsibility, based upon the notion of joint 
intentions. The Responsibility framework was devised 
specifically for coordinating behavior in complex, 
unpredictable and dynamic environments such as particle 
accelerator control. Jennings contribution was that he 
noticed that in a distributed multi-agent system when 
anything unexpected happened (i.e. new information 
invalidated existing goals, synchronization between 
actions was disrupted or agents had misinterpreted the 
situation) the multi-agent community would act 
incoherently. This incoherence occurred because agents 
did not embody sufficient knowledge about the process of 
team problem solving. Jennings provided agents with an 
explicit model of joint problem solving about which they 
could reason when deciding how to interact with others. 
This new development found its application in ARCHON. 
 

ARCHON (1993-1996) was Europe's largest ever 
project in the area of Distributed Artificial Intelligence 
(DAI) and applied to CERN control systems for 
controlling and diagnosing faults in one of their particle 
accelerators (called the Proton Synchrotron (PS)). The 
Archon-project, which Jennings was in charge of, 

provided the architecture for integrating multiple pre-
existing expert systems to exchange information and, 
therefore, increase the overall performance.  

 
Another application of AI techniques in operating a 

larger system is in the field of fault detection and system 
diagnosis. Leger et al. (1996) points out that in order to 
operate a successful plant, continues improvement must 
be made in the areas of safety quality and reliability. 
Central to this continuous improvement is the early or 
proactive detection and correct diagnosis of process 
faults. The paper examines the feasibility of using 
cumulative summation control charts and artificial neural 
networks together for fault detection and diagnosis 
(FDD). The control chart and neural network are linked 
by using a characteristic fault signature pattern for each 
fault, which is to be detected and diagnosed.  
 

In one of the first papers from Klein and Luger [2] on 
beam tuning, a framework of a general purpose intelligent 
control system for a particle accelerator has been 
presented. Results of coupling neural network and expert 
systems technology to solve several standard accelerator 
tuning problems based on realistic simulations have been 
discussed. The authors also examine the effectiveness of 
additional heuristic search techniques such as genetic 
algorithms. However, the algorithm did not converge 
towards specific solution methods to create the desired 
result. To solve the problem, the authors also examined 
the capabilities of an analytic control algorithm, fuzzy 
logic (FL) control, and genetic algorithm searches. It was 
noticed that the accuracy of the FL solution depended 
greatly on the quality of the knowledge the author placed 
in the system. The genetic algorithm is an appropriate 
heuristic for focusing control because it can search large 
solution spaces in non-linear domains.  
 

In continuation of their earlier work Klein and Luger 
(Klein et al. 1997(a)) have identified two different sources 
of control information that must both be incorporated into 
any successful automated control system. The first source 
includes analytic domain knowledge necessary for 
modeling the accelerator and beam line. The second, 
equally important source is experiential knowledge about 
the specific facility and group of components being 
controlled.  
 

Stern (Stern et al. 1997) reports on the continuing work 
of Klein on coordinating the activity of the control 
subsystems to adaptively execute sustained sequences of 
control actions of the type required to tune the whole 
accelerator in a coordinated fashion. The discussed 
control system employs a multi-layer organization in 
which knowledge–based decision making is used to 
dynamically configure a lower level optimization and 
control algorithm. An object-oriented physical access 
layer supported by a distributed control system allows 
abstraction from the lower level details of hardware 
manipulation, signal processing, and synchronization. 
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This hybrid architecture integrates a variety of 
methodologies, including teleo-reactive trees for dynamic 
exception handling and re-planning.  
 

In Klein’s last paper [7] he discusses the results of their 
research on the use of Teleo-Reactive programming as a 
high level control mechanism. According to the authors, 
control of particle accelerators requires a hybrid 
architecture which includes methodologies for planning, 
intelligent search, and pattern recognition. The author’s 
suggestion is that control must be distributed and 
hierarchical to utilize parallel problem-solving in the face 
of time-sensitive control requirements and to decompose 
complex control problems into more manageable 
subtasks. As a high level control mechanism, the authors 
used a planning technique known as Teleo-Reactive (TR) 
programming developed by Nils Nilsson at Stanford. TR 
programming combines the responsiveness of an analog 
feedback loop and the goal-oriented behavior of a 
production system, to allow the control system to govern 
the execution of its tasks in a dynamic environment. The 
system has been successfully tested at both the 
Brookhaven National Laboratory ATF and at the ATLAS 
facility at Argonne National Laboratory. 

 
Fiesler [8] reports on a suit of tests on predictive 

algorithms to determine their ability to learn from and 
find relationships between large numbers of variables. In 
particular, they used COMFORT, a particle accelerator 
simulator, to generate large amounts of data. They 
eventually compared the results among several 
fundamentally different types of algorithms, including 
least squares and hybrid neural networks with real data 
that were obtained from Brookhaven National Laboratory.  

SUMMARY  
It seems surprising that virtually all research on AI 

applied to particle accelerator stopped around the year 
2000. This certainly can’t be explained with the Y2K 
problem. Nevertheless, it seems like interest and/or 
funding must have stopped around that time. The 
alternative is, of course, that the research in the area 
wasn’t promising or the problem was so complex that 
researchers did not find the return of investment very 
appealing to them.  

 
Nevertheless, the author of this paper sees a great 

chance for AI to make its comeback in accelerator control 
rooms. The first and foremost reason is that running these 
machines has become a time and cost critical issue. The 
older an accelerator gets the more maintenance/upgrade 
work needs to be invested. This is in turn creates a 
problem since users/experimenters are paying to do their 
experiments and extensive maintenance/upgrade work 
reduces experimental time. With less time for experiments 
less money comes in for maintenance. However, less 
maintenance means that the accelerators become more 
error/fault prone. Therefore, managers have to balance 

down time vs. beam time and try to minimize 
conditioning, start-up time and fault recovery time. In 
addition, managers increase their attention to preventive 
maintenance (predicting when something might happen 
and then to something beforehand). 

 
Speeding up beam tuning, advanced fault detection, and 

preventive maintenance (sometimes referred to as 
structural health) are areas where AI can and has already 
made an impact. Specifically applied to accelerator 
controls, expert beam tuning systems have been around 
for more than a decade, fault recovery programs got more 
attention at the end of the century. On the other hand 
preventive maintenance has never been applied to 
accelerator facilities. So, there is a chance here to lead the 
way. 
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