A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  


Paper Title Other Keywords Page
TUP068 Project of a Neutron Source Based on the Sub-Critical Assembly Driven by Electron Linear Accelerator neutron, electron, target, shielding 551
  • I.M. Karnaukhov, V. Azhazha, A.N. Dovbnya, A.S. Kostromin, V.E. Krasnorutzkiy, I.M. Neklyudov, S.A. Perezhogin, S. Soldatov, A.Y. Zelinsky
    NSC/KIPT, Kharkov
  • I. Bolshinsky
    Idaho National Laboratory, Idaho
  • M.Y.A. Gohar
    ANL, Argonne

Today accelerator driven subcritical assembly is candidate for the next generation of energy-generating nuclear facility, which could provide safe energy production, burning of transuranium elements and transmutation of radionuclides. Use of the electron beam with particle energy up to 150-200 MeV secures several advantages. Electron linear accelerators are much cheaper compared to hadron accelerators. Homogeneous irradiation of the assembly with neutrons could be provided. NSC KIPT together with ANL develops the project of a neutron source based on the sub-critical assembly driven by electron linear accelerator. Energy of electrons is 100-200 MeV. The target and assembly design is optimized to maximize the neutron source intensity with subcriticality of 0.98. Accelerator on average beam power of 100 kW, with repetition rate up to 300 Hz and pulse duration of 3,2 ms is under development. Transportation line should provide beam transfer with minimal losses of electrons and should form homogeneous distribution of the particle density at the target. Maximal value of a neutron flux is Fm=2x1013 n/(cm2s), and power of energy release in the result of nuclei fission is Pm≈ 100 kW.