A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Washio, M.

Paper Title Page
TUP065 Demonstration of Multi-Pulse X-ray Generation via Laser-Compton Scattering Using Pulsed-Laser Super-Cavity 545
  • K. Sakaue, M. Washio
    RISE, Tokyo
  • S. Araki, M.K. Fukuda, Y. Higashi, Y. Honda, T. Taniguchi, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • N. Sasao
    Kyoto University, Kyoto

Funding: Work supported by a Grant-In-Aid for Creative Scientific Research of JSPS (KAKENHI 17GS0210) and a Grant-In-Aid for JSPS Fellows (19-5789)
A compact and high quality X-ray source is required for various field, such as medical diagnosis, drug manifacturing and biological sciences. Laser-Compton based X-ray source that consist of a compact electron storage ring and a pulsed-laser super-cavity is one of the solutions of a compact X-ray source. Pulsed-laser super-cavity has been developed at Waseda University for a compact high brightness X-ray source. The pulsed-laser super-cavity enables to make high peak power and small waist laser at the collision point with the electron beam. 357 MHz mode-locked Nd:VAN laser pulses can be stacked stably in a 420 mm long Fabry-Perot cavity with "burst mode", which means stacking of electron beam synchronized amplified pulses in our R&D. In view of this successful result, we have started an X-ray generation experiment using a super-cavity and a multi-bunch electron beam at KEK-LUCX. Recently, the demonstration experiment between the burst mode pulsed-laser super-cavity and the 100bunch multi-bunch electron beam is successfully performed. Development of the super-cavity and the experimental results of X-ray generation will be presented at the conference.

TUP095 Development of a Cs-Te Cathode RF Gun at Waseda University 624
  • Y. Kato, A. Fujita, Y. Hama, T. Hirose, C. Igarashi, A. Masuda, A. Murata, T. Nomoto, K. Sakaue, T. Suzuki, M. Washio
    RISE, Tokyo
  • H. Hayano, T. Takatomi, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • Y. Kamiya
    University of Tokyo, Tokyo
  • S. Kashiwagi
    ISIR, Osaka
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima
  • R. Kuroda
    AIST, Tsukuba, Ibaraki

Funding: Work supported by MEXT High Tech Research Project HRC707, JSPS Grant-in-Aid for Scientific Research (B)(2) 16340079
At Waseda University, we have been developing a high quality electron source based on photo-cathode rf gun which has a Cs-Te cathode with high quantum efficiency. Until now, at the Waseda University we have succeeded the soft X-ray generation via inverse-Compton scattering and pulse radiolysis system for studying the early processes of radiation chemistry with electron beams generated by copper cathode rf gun. Cs-Te rf gun is expected to generate higher charge electron bunches with a low emittance than a copper cathode because of its high quantum efficiency and also the high-quality multi-bunch electron beams. That enables us to extend the range of electron beam parameters for our application experiments. However, a Cs-Te cathode has a short life compared with a copper, so it has to be exchanged occasionally, thus we have developed a new rf-gun cavity which can be attached the compact cathode load-lock system. Moreover, we improved the design of an existing rf-gun cavity for the reduction of the dark current and the higher electric field. In this conference, the performance of the improved cavity and the result of electron beam generation experiments will be reported.