A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Terzic, B.     [Terzić, B.]

Paper Title Page
MOP097 Orthogonal Basis Function Approximation of Particle Distribution in Numerical Simulations of Beams 299
 
  • B. Terzić
    Northern Illinois University, DeKalb, Illinois
 
 

Funding: Work supported by the Department of Defense under contract N00014-06-1-0587 with Northern Illinois University.
Numerical simulations of charged particle beams require an approximation to the particle distribution being simulated. Depending on the flavor of the N-body code, these approximations suffer from different computational difficulties. We briefly outline these difficulties, and present approximations to particle distributions using orthogonal functions. We discuss two different types of orthogonal functions, new in the context of beam simulations: wavelets and scaled Gauss-Hermite basis. On the wavelet side, we present the wavelet-based Poisson equation solver we recently devised for use in particle-in-cell beam simulations, and report on some important enhancements being implemented as a part of an ongoing project. On scaled Gauss-Hermite basis side, we report preliminary results in efficiently approximating discrete particle distributions in an orthogonal basis in which the corresponding potential and forces are directly and easily found from the expansion coefficients of the distribution. Finally, we discuss application of these particle distribution representations in simulation of coherent synchrotron radiation.