A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Okamura, M.

Paper Title Page
MOP044 Status of DPIS Development in BNL 169
 
  • M. Okamura
    BNL, Upton, Long Island, New York
  • T. Kanesue
    Kyushu University, Department of Applied Quantum Physics and Nuclear Engineering, Fukuoka
  • J. Tamura
    Department of Energy Sciences, Tokyo Institute of Technology, Yokohama
 
 

Direct injection scheme was proposed in 2000 at RIKEN in Japan. The first beam test was done at Tokyo Institute of Technology using a CO2 laser and an 80 MHz 4 vane RFQ in 2001, and further development continued in RIKEN. In 2006, all the experimental equipment was moved to BNL and a new development program was started. We report on our recent activities at BNL including the use of a frozen gas target for the laser source, low charge state ion beam production and a newly developed laser irradiation system.

 
MOP045 Design Study of a DPIS Injector for a Heavy Ion FFAG 172
 
  • M. Okamura, D. Raparia
    BNL, Upton, Long Island, New York
  • K. Ishibashi, T. Kanesue, Y. Yonemura
    Kyushu University, Department of Applied Quantum Physics and Nuclear Engineering, Fukuoka
 
 

Direct plasma injection scheme has been developed recently for producing and accelerating intense pulsed heavy ion beams with high charge states. This new method uses a combination of a laser ion source and an RFQ linear accelerator and its repetition rate is determined by the laser system. Fixed field alternating gradient (FFAG) accelerator is being focused as a high repetition synchrotron. An integration of these new techniques enables one to produce a large beam power with heavy ion beams. At Ito campus of Kyushu University, a proton FFAG is being installed. We propose to construct a new injector linac for the FFAG. The planned operating parameters are 100 Hz repetition rate, 20 mA of fully stripped carbon beam and 200 MHz operating frequency for the linac.

 
MOP059 C6+ Ion Hybrid Single Cavity Linac with Direct Plasma Injection Scheme for Cancer Therapy 211
 
  • T. Hattori, N. Hayashizaki, T. Ishibashi, T. Ito, R. Kobori, L. Lu
    RLNR, Tokyo
  • D. Hollanda, L. Kenez
    U. Sapientia, Targu Mures
  • M. Okamura
    BNL, Upton, Long Island, New York
  • J. Tamura
    Department of Energy Sciences, Tokyo Institute of Technology, Yokohama
 
 

We succeeded to accelerate very intense carbon ions with the Direct Plasma Injection Scheme (DPIS) using Laser ion source in 2001 and 2004. The peak current reached more than 60 mA of C4+ and 18 mA of C6+ with pulse width of 2-3 x 10-6 sec. We believe that these techniques are quite effective for pulse accelerator complexes such as linear accelerator and synchrotron (heavy-ion cancer therapy). In heavy cancer therapy, carbon stripper section is rejected by accelerated C6+. One turn injection of high intensity (6 mA) C6+ ion is possible to enough in synchrotron. We study a new hybrid single cavity linac combined with radio frequency quadrupole (RFQ) electrodes and drift tube(DT) electrodes into a single cavity. The hybrid linac is able to downsize the linac system and reduce the peripheral device. Using DPIS with Laser ion source, we study POP hybrid single-cavity accelerator of C6+ for injector linac of C cancer therapy. The linac is designed to accelerate 6 mA C6+ ion from 40 keV/u to 2 MeV/u with YAG Laser ion source. We will present the design procedures of this hybrid linac, which is based on a three-dimensional electromagnetic field and particle orbit calculation.

 
TUP120 EBIS Preinjector Construction Status 685
 
  • J.G. Alessi, D.S. Barton, E.N. Beebe, S. Bellavia, O. Gould, A. Kponou, R.F. Lambiase, E.T. Lessard, V. LoDestro, R. Lockey, M. Mapes, D.R. McCafferty, A. McNerney, M. Okamura, A. Pendzick, D. Phillips, A.I. Pikin, D. Raparia, J. Ritter, J. Scaduto, L. Snydstrup, M. Wilinski, A. Zaltsman
    BNL, Upton, Long Island, New York
  • U. Ratzinger, A. Schempp
    IAP, Frankfurt am Main
 
 

Funding: Work supported by the US Department of Energy and the National Aeronautics and Space Agency
A new heavy ion preinjector is presently under construction at Brookhaven National Laboratory. This preinjector uses an Electron Beam Ion Source (EBIS), and an RFQ and IH Linac, both operating at 100 MHz, to produce 2 MeV/u ions of any species for use, after further acceleration, at the Relativistic Heavy Ion Collider, and the NASA Space Radiation Laboratory. Among the increased capabilities provided by this preinjector are the ability to produce ions of any species, and the ability to switch between multiple species in 1 second, to simultaneously meet the needs of both physics programs. Fabrication of all major components for this preinjector is in process, with testing of the EBIS and RFQ starting this year. The status of this construction will be presented.

 

slides icon

Slides