A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Lanfranco, G.

Paper Title Page
MO301 Overview of the High Intensity Neutrino Source Linac R&D Program at Fermilab 36
  • R.C. Webber, G. Apollinari, J.-P. Carneiro, I.G. Gonin, B.M. Hanna, S. Hays, T.N. Khabiboulline, G. Lanfranco, R.L. Madrak, A. Moretti, T.H. Nicol, T.M. Page, E. Peoples, H. Piekarz, L. Ristori, G.V. Romanov, C.W. Schmidt, J. Steimel, I. Terechkine, R.L. Wagner, D. Wildman
    Fermilab, Batavia
  • P.N. Ostroumov
    ANL, Argonne
  • W.M. Tam
    IUCF, Bloomington, Indiana

Funding: Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
The High Intensity Neutrino Source (HINS) linac R&D program at Fermilab aims to construct and operate a first-of-a-kind, 60 MeV, superconducting H- linac. The machine will demonstrate acceleration of high intensity beam using superconducting spoke cavities from 10 MeV, solenoidal focusing optics throughout for axially-symmetric beam to control halo growth, and operation of many cavities from a single high power rf source for acceleration of non-relativistic particles.


slides icon


THP030 High Gradient Test Results of 325 MHz Single Spoke Cavity at Fermilab 851
  • G. Apollinari, I.G. Gonin, T.N. Khabiboulline, G. Lanfranco, A. Mukherjee, J.P. Ozelis, L. Ristori, G.V. Romanov, D.A. Sergatskov, R.L. Wagner, R.C. Webber
    Fermilab, Batavia
  • J.D. Fuerst, M.P. Kelly, K.W. Shepard
    ANL, Argonne

The High Intensity Neutrino Source (HINS) project represents the current effort at Fermilab to develop 60 MeV Proton/H- Linac as a front end for possible use in the Project X. Eighteen superconducting β=0.21 single spoke resonators (SSR), operating at 325 MHz, comprise the first stage of the HINS cold section. Two SSR cavities have now been fabricated in industry under this project and undergone surface treatment that is described here. We report the results of high gradient tests of the first SSR in the Vertical Test System (VTS). The cavity successfully achieved accelerating gradient of 13.5 MV/m; higher than the design operating gradient of 10 MV/m. The history of multipacting and conditioning during the VTS tests will be discussed. Experimental measurements of the cavity mechanical and vibration properties including Lorenz force detuning and measurements of X-rays resulting from field emission are also presented.