A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kenez, L.

Paper Title Page
MOP059 C6+ Ion Hybrid Single Cavity Linac with Direct Plasma Injection Scheme for Cancer Therapy 211
  • T. Hattori, N. Hayashizaki, T. Ishibashi, T. Ito, R. Kobori, L. Lu
    RLNR, Tokyo
  • D. Hollanda, L. Kenez
    U. Sapientia, Targu Mures
  • M. Okamura
    BNL, Upton, Long Island, New York
  • J. Tamura
    Department of Energy Sciences, Tokyo Institute of Technology, Yokohama

We succeeded to accelerate very intense carbon ions with the Direct Plasma Injection Scheme (DPIS) using Laser ion source in 2001 and 2004. The peak current reached more than 60 mA of C4+ and 18 mA of C6+ with pulse width of 2-3 x 10-6 sec. We believe that these techniques are quite effective for pulse accelerator complexes such as linear accelerator and synchrotron (heavy-ion cancer therapy). In heavy cancer therapy, carbon stripper section is rejected by accelerated C6+. One turn injection of high intensity (6 mA) C6+ ion is possible to enough in synchrotron. We study a new hybrid single cavity linac combined with radio frequency quadrupole (RFQ) electrodes and drift tube(DT) electrodes into a single cavity. The hybrid linac is able to downsize the linac system and reduce the peripheral device. Using DPIS with Laser ion source, we study POP hybrid single-cavity accelerator of C6+ for injector linac of C cancer therapy. The linac is designed to accelerate 6 mA C6+ ion from 40 keV/u to 2 MeV/u with YAG Laser ion source. We will present the design procedures of this hybrid linac, which is based on a three-dimensional electromagnetic field and particle orbit calculation.