A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kanesue, T.

Paper Title Page
MOP044 Status of DPIS Development in BNL 169
 
  • M. Okamura
    BNL, Upton, Long Island, New York
  • T. Kanesue
    Kyushu University, Department of Applied Quantum Physics and Nuclear Engineering, Fukuoka
  • J. Tamura
    Department of Energy Sciences, Tokyo Institute of Technology, Yokohama
 
 

Direct injection scheme was proposed in 2000 at RIKEN in Japan. The first beam test was done at Tokyo Institute of Technology using a CO2 laser and an 80 MHz 4 vane RFQ in 2001, and further development continued in RIKEN. In 2006, all the experimental equipment was moved to BNL and a new development program was started. We report on our recent activities at BNL including the use of a frozen gas target for the laser source, low charge state ion beam production and a newly developed laser irradiation system.

 
MOP045 Design Study of a DPIS Injector for a Heavy Ion FFAG 172
 
  • M. Okamura, D. Raparia
    BNL, Upton, Long Island, New York
  • K. Ishibashi, T. Kanesue, Y. Yonemura
    Kyushu University, Department of Applied Quantum Physics and Nuclear Engineering, Fukuoka
 
 

Direct plasma injection scheme has been developed recently for producing and accelerating intense pulsed heavy ion beams with high charge states. This new method uses a combination of a laser ion source and an RFQ linear accelerator and its repetition rate is determined by the laser system. Fixed field alternating gradient (FFAG) accelerator is being focused as a high repetition synchrotron. An integration of these new techniques enables one to produce a large beam power with heavy ion beams. At Ito campus of Kyushu University, a proton FFAG is being installed. We propose to construct a new injector linac for the FFAG. The planned operating parameters are 100 Hz repetition rate, 20 mA of fully stripped carbon beam and 200 MHz operating frequency for the linac.