A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kamiya, Y.

Paper Title Page
MOP079 Development of Modulating Permanent Magnet Sextupole Lens for Focusing of Pulsed Cold Neutrons 263
 
  • M. Yamada, H. Fujisawa, M. Ichikawa, Y. Iwashita, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • P. Geltenbort
    ILL, Grenoble
  • K. Hirota, Y. Otake, H. Sato
    RIKEN, Wako, Saitama
  • T. Ino, K. Mishima, T. Morishima, S. Mutou, H.M. Shimizu, K. Taketani
    KEK, Tsukuba
  • Y. Kamiya, S. Kawasaki, S. Komamiya, H. Otono, S. Yamashita
    University of Tokyo, Tokyo
  • T. Oku, K. Sakai, T. Shinohara, J. Suzuki
    JAEA, Ibaraki-ken
  • Y. Seki
    Kyoto University, Kyoto
  • T. Yoshioka
    ICEPP, Tokyo
 
 

We are developing a modulating permanent magnet sextupole lens to focus pulsed cold neutrons. It is based on the extended Halbach configuration to generate stronger magnetic field. In order to adjust the strength, the magnet is divided into two nested co-axial rings, where the inner ring is fixed and the outer ring can be rotated. Synchronizing the modulation with neutron beam pulse suppresses the chromatic aberration. These devices largely improve the utilization efficiency of neutrons, which makes even small linac based neutron sources practical. We have fabricated a half-scale model and studied its strength, torque and temperature rise during the operation. The main causes of the temperature rise are eddy-current loss in the poles made of soft magnetic material in inner ring and hysteresis loss. A laminated structure reduced the eddy-current loss. The temperature rise was suppressed to about half of the former model. We now study their B-H curve to optimize the thickness of the sheet. Annealing of the material is supposed to reduce the hysteresis loss, which will be tested soon. The experimental results of very-cold neutrons focusing with the half-scale model are also described.

 

slides icon

Slides

 
TUP095 Development of a Cs-Te Cathode RF Gun at Waseda University 624
 
  • Y. Kato, A. Fujita, Y. Hama, T. Hirose, C. Igarashi, A. Masuda, A. Murata, T. Nomoto, K. Sakaue, T. Suzuki, M. Washio
    RISE, Tokyo
  • H. Hayano, T. Takatomi, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • Y. Kamiya
    University of Tokyo, Tokyo
  • S. Kashiwagi
    ISIR, Osaka
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima
  • R. Kuroda
    AIST, Tsukuba, Ibaraki
 
 

Funding: Work supported by MEXT High Tech Research Project HRC707, JSPS Grant-in-Aid for Scientific Research (B)(2) 16340079
At Waseda University, we have been developing a high quality electron source based on photo-cathode rf gun which has a Cs-Te cathode with high quantum efficiency. Until now, at the Waseda University we have succeeded the soft X-ray generation via inverse-Compton scattering and pulse radiolysis system for studying the early processes of radiation chemistry with electron beams generated by copper cathode rf gun. Cs-Te rf gun is expected to generate higher charge electron bunches with a low emittance than a copper cathode because of its high quantum efficiency and also the high-quality multi-bunch electron beams. That enables us to extend the range of electron beam parameters for our application experiments. However, a Cs-Te cathode has a short life compared with a copper, so it has to be exchanged occasionally, thus we have developed a new rf-gun cavity which can be attached the compact cathode load-lock system. Moreover, we improved the design of an existing rf-gun cavity for the reduction of the dark current and the higher electric field. In this conference, the performance of the improved cavity and the result of electron beam generation experiments will be reported.