A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kamitani, T.

Paper Title Page
TUP010 Pulse-to-Pulse Mode Switching of KEKB Injector Linac 407
 
  • T. Kamitani, K. Furukawa, N. Iida, M. Ikeda, K. Kakihara, M. Kikuchi, T. Mimashi, S. Ohsawa, M. Satoh, A. Shirakawa, T. Sugimura, T. Suwada, K. Yokoyama
    KEK, Ibaraki
 
 

KEKB injector linac supplies electron and positron beams to the KEKB storage rings and the synchrotron radiation facility rings (PF, AR) as well. Injection modes to these four destinations are switched by inserting and extracting positron generation target, changing magnet parameters and acceleration rf phases. To enable pulse-by-pulse switching in three out of the four modes, a pulse bend and pulse steerings are introduced. For DC quads and DC steerings, compatible beam-optical settings for beams of different beam-energy profiles are introduced. We have been performing beam studies to establish the pulse-by-pulse mode switching for daily beam operation. This paper describes a scheme for the mode switching and reports on an achievement of the beam studies.

 
TUP012 Design and Performance of Optics for Multi-energy Injector Linac 413
 
  • Y. Ohnishi, K. Furukawa, N. Iida, T. Kamitani, M. Kikuchi, Y. Ogawa, K. Satoh, K. Yokoyama
    KEK, Ibaraki
 
 

KEK injector linac provides an injection beam for four storage rings, KEKB high energy electron ring(HER), low energy positron ring(LER), PF-AR electron ring, and PF electron ring. The injection beams for these rings have different energies and intensities. Recently, a requirement of simultaneous injection among these rings arises to make a top-up injection possible. Magnetic fields of DC magnets to confine the beam to the accelerating structures can not be changed between pulse to pulse, although the beam energy can be controlled by fast rf phase shifters of klystrons. This implies that a common magnetic field of the bending magnets and the quadrupole magnets should be utilized to deliver beams having different characteristics. Therefore, we have designed multi-energy optics for the KEKB-HER electron ring(8 GeV, 1 nC/pulse), the PF electron ring(2.5 GeV, 0.1 nC/pulse), and the KEKB-LER positron ring(3.5 GeV, 0.4 nC/pulse). We present a performance of the multi-energy injector linac.